Algebra

 $ctg^2 x = cos x / sin x$

ctg x

=1(m / Ma) + RoT)

0S -

bsin.

حمّل التطبيق على موبايلك الأندرويد أو الأيفون موقع مذكرات جاهزة للطباعة - www.cryp2day.com

First Secondary

First Term

p V = (a + b)ivi = $ax^{2} + bx + c = 0$ bx + c = 0

Student Name:

First Secondary	Futures Language Schools A 2021-2022		
3 $4x^2 - 25 = 0$			
<i>Solution:</i> $:: 4x^2 - 25 = 0$	$\therefore (2x-5)(2x+5) = 0$		
$\therefore x = \frac{5}{2}$ or x	$=\frac{-5}{2}$: The S.S. $= \{\frac{5}{2}, \frac{-5}{2}\}$		
$a x^2 - 6x + 9 = 0$			
<i>Solution:</i> $:: x^2 - 6x + 9 = 0$	$\therefore (x-3)(x-3) = 0$		
$\therefore x = 3$	$\therefore \text{ The S.S.} = \{3\}$		
General Formula: The equation: $a x^2 + b x + c = 0$ where $a \neq 0$ is of second degree	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
its roots (solutions) gives by the relation			
Example 2 Find in R the solution set of each of the following equations:			
$0 x^2 - 6 x - 11 = 0$	(given $\sqrt{5} \simeq 2$)		
Solution: $x^2 - 6x - 11 = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $x = \frac{6 \pm \sqrt{36 - 4 \times 1 \times -11}}{2 \times 1} = \frac{6}{2}$ $x_1 = \frac{6 + 4\sqrt{5}}{2}$	a = 1 b = -6 c = -11 or $x_{2} = \frac{6 \pm 4\sqrt{5}}{2}$		
$\therefore x_1 \simeq \frac{6+4\times 2}{2} = 7$ $\therefore \text{ The S.S.} = \{7, -1\}$	or $x_2 \simeq \frac{6-4 \times 2}{2} = -1$		

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

EDUCATIONAL SYSTEMS

First Sec	ondary	Futures Languag Mathematical De	epartment A 2021-2022
2 x ² - 6	x + 7 = 0	(giv	$\operatorname{en}\sqrt{2}\simeq 1.4$)
Solution:	$\therefore x^2 - 6x + 7 = 0$		
	$\therefore x = \frac{-b \pm \sqrt{b^2 - 4 \operatorname{ac}}}{2 \operatorname{a}}$		$\mathbf{a} = 1$ $\mathbf{b} = -6$
	$\therefore x = \frac{6 \pm \sqrt{36 - 4 \times 1 \times 7}}{2 \times 1} = \frac{6 \pm \sqrt{2}}{2}$	$\frac{\sqrt{8}}{2} = \frac{6 \pm 2\sqrt{2}}{2}$	c = 7
	$\therefore x_1 = \frac{6+2\sqrt{2}}{2}$	or	$x_2 = \frac{6 - 2\sqrt{2}}{2}$
	$\therefore x_1 \simeq \frac{6+2 \times 1.4}{2} = 2.2$	or	$x_2 \simeq \frac{6 - 2 \times 1.4}{2} = 1.6$
	: The S.S. = $\{2.2, 1.6\}$		
3 $x - \frac{5}{x} =$	= 3		
Solution:	$\therefore x - \frac{5}{x} = 3$ multipl	y by x	
	$\therefore x^2 - 5 = 3x \qquad \therefore$	$x^2 - 3x - 5$	= 0
	$\therefore x = \frac{-b \pm \sqrt{b^2 - 4 \operatorname{ac}}}{2 \operatorname{a}}$		a = 1 $b = -3$
	$\therefore x = \frac{3 \pm \sqrt{9 - 4 \times 1 \times -5}}{2 \times 1} = \frac{3 \pm 2}{2}$	$\frac{\sqrt{29}}{2}$	c = -5
	$\therefore x_1 = \frac{3 + \sqrt{29}}{2}$	or	$x_2 = \frac{3 - \sqrt{29}}{2}$
	: The S.S. = $\left\{\frac{3+\sqrt{29}}{2}, \frac{3-\sqrt{29}}{2}\right\}$		
4 $x^2 - 2$	2x + 6 = 0		
Solution:	$\therefore x^2 - 2x + 6 = 0$		a = 1
	$\therefore x = \frac{-b \pm \sqrt{b^2 - 4 \operatorname{ac}}}{2 \operatorname{a}}$		$\mathbf{b} = -2$
	$\therefore x = \frac{2 \pm \sqrt{4 - 4 \times 1 \times 6}}{2 \times 1} = \frac{2 \pm \sqrt{2}}{2}$	-20	c = 6
	\therefore The S.S. = Ø		

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة First Term | Algebra

EDUCATIONAL SYSTEMS

Futures Language Schools Mathematical Department

PRACTICE (1)

Q1: Solve the equation $4x^2 + 40x + 40 = -60$ by factoring.

A x = -5B x = 1 or x = 25C x = -1 or x = -25D x = 5

Q2: Solve the equation $2(x + 1)^2 + 5(x + 1) = 0$.

 $\begin{bmatrix} A \\ x = -1, x = -\frac{7}{2} \\ B \\ x = -1, x = -\frac{5}{2} \\ \hline C \\ x = -\sqrt{\frac{5}{2}} \\ \hline D \\ x = 1 \\ \hline E \\ x = \sqrt{\frac{5}{2}} \end{bmatrix}$

Q3: Find the solution set of x(x - 19) = -15x in \mathbb{R} .

A {4}
B {0,4}
C {-4}
D {19,-15}
E {0,-4}

4

Futures Language Schools Mathematical Department

2021-2022

Q4: Find the solution set of $(x + 9)^2 = (x + 9)$ in \mathbb{R} .
A $\{-9, -10\}$
B {10}
C $\{-9, -8\}$
D {9,-8}
E {9}

When solving the quadratic equation in one variable, there are three cases:

Futures Language Schools Mathematical Department

PRACTICE (2)

Q1: Solve the equation
$$-x^2 + 7x + 1 = 0$$
.

$$\begin{bmatrix} A & \left\{ \frac{-7+\sqrt{53}}{2}, \frac{-7-\sqrt{53}}{2} \right\} \\ B & \left\{ \frac{7-\sqrt{53}}{2}, \frac{7+\sqrt{53}}{2} \right\} \\ C & \left\{ \frac{7-\sqrt{51}}{2}, \frac{7+\sqrt{51}}{2} \right\} \\ D & \left\{ \frac{49-\sqrt{11}}{2}, \frac{49+\sqrt{11}}{2} \right\} \\ E & \left\{ \frac{7-\sqrt{11}}{2}, \frac{7+\sqrt{11}}{2} \right\} \end{bmatrix}$$

Q2: Find the solution set of the equation 3x² - 2(7 - x) = 0, giving values to one decimal place.
A {1.9, -2.5}
B {-1.9, -2.5}
C {3.7, -5.0}
D {-3.7, -5.0}

Q3: Find the solution set of the equation $x^2 - 8x - 2 = 9x + 8$, giving values correct to three decimal places.

- B {0.569, -17.569}
- C {8.785, -0.285}
- D {0.285, -8.785}

Futures Language Schools Mathematical Department

2021-2022

Example **3**

Find the S.S. of each of the following equations graphically, then check the result algebraically:

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

PRACTICE (3)

Q1: Consider the graph:

The roots of a quadratic can be read from the graph. What are they?

Q2: Solve $-x^2 - x + 6 = 0$ by factoring, and hence determine which of the following figures would be a sketch of $y = -x^2 - x + 6$.

موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

2021-2022

7 Each of the following graphs illustrates a quadratic function. Find the solution set of the equation f(x) = 0 in each figure .

- 8 Find the solution set of each of the following equations in R then, and verify the result graphically:
 - A
 $x^2 = 3x + 40$ B
 $2x^2 = 3 5x$

 C
 $6x^2 = 6 5x$ D
 $(x 3)^2 = 5$

 E
 $x^2 + 2x = 12$ F
 $\frac{1}{2}x^2 \frac{3}{5}x = 1$
- (9) Solve the following equations in \mathbb{R} using the general formula then approximate the result to the nearest tenth.

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

A $3x^2 - 65 = 0$ **B** $x^2 - 6x + 7 = 0$ **D** $2x^2 + 6x + 8 = 0$ **D** $2x^2 + 3x - 4 = 0$ **E** $5x^2 - 3x - 1 = 0$ **F** $3x^2 - 6x - 4 = 0$

10

.....

Futures Language Schools Mathematical Department

2021-2022

- Numbers: If the sum of the whole consecutive numbers (1+2+3++ n)is given by the relation S = n/2 (1+n), how many whole consecutive numbers starting from the number 1 and their sum equals:
 A 78
 B 171
 C 253
 D 465
- Each of the following figure shows the graph of a quadratic function in one variable.
 Find the rule of each function.

11

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department		
Complex numberComplex numberThe complex number is the number which can be written in the form "a + bi" where a and b are real numbers. $a + bi$ 			
Example @ Solve each of the following equations:			
$0 5x^2 + 245 = 0$	$9 3x^2 + 27 = 0$		
$9x^2 + 125 = 61$	$94x^2 + 100 = 75$		
501			
$0 5x^2 + 245 = 0$	$2 3x^2 + 27 = 0$		
$\therefore 5x^2 = -245$	$\therefore 3x^2 = -27$		
$\therefore x^2 = \frac{-245}{2}$	$\therefore x^2 = \frac{-27}{2}$		
$\begin{array}{c} 5\\ \therefore x^2 = -49 \\ \therefore x = \pm \sqrt{-49} \end{array}$	$x^{2} = -9 \qquad \therefore x = \pm \sqrt{-9}$		
$\therefore x = \pm \sqrt{49 \mathrm{i}^2} \qquad \therefore x = \pm 7 \mathrm{i}$	$\therefore x = \pm \sqrt{9 i^2} \qquad \therefore x = \pm 3 i$		
$9x^2 + 125 = 61$	$4x^2 + 100 = 75$		
$\therefore 9x^2 = 61 - 125$	$\therefore 4x^2 = 75 - 100$		
$\therefore 9x^2 = -64$	$\therefore 4x^2 = -25$		
$\therefore x^2 = \frac{-64}{9} \qquad \qquad \therefore x = \pm \sqrt{\frac{-64}{9}}$	$\therefore x^2 = \frac{-25}{4} \qquad \qquad \therefore x = \pm \sqrt{\frac{-25}{4}}$		
$\therefore x = \pm \sqrt{\frac{64}{9} i^2} \qquad \therefore x = \pm \frac{8}{3} i$	$\therefore x = \pm \sqrt{\frac{25}{4} i^2} \qquad \therefore x = \pm \frac{5}{2}i$		

Futures Language Schools Mathematical Department

PRACTICE (1)

Q1: Solve the equation $2x^2 = -50$.

A
$$x = 5, x = -5$$

B $x = 5i, x = -5i$
C $x = 5\sqrt{2}i, x = -5\sqrt{2}i$
D $x = \frac{5\sqrt{2}}{2}i, x = -\frac{5\sqrt{2}}{2}i$
E $x = \frac{5}{2}i, x = -\frac{5}{2}i$

Q2: Simplify 17*i*(-5*i*).

Q3: Simplify $(2i)^2(-2i)^3$.

A 32 B -32i

С

D -4i

4

E 32i

Q4: Solve the equation
$$x^2 = -16$$
.
A $x = -8$
B $x = 2i, x = -2i$
C $x = 4i, x = -4i$
D $x = i, x = 4$
E $x = 4, x = -4$

FUTURES EDUCATIONAL SVISTEMS

First Secondary	Futures Language Schools 2021-2022 Mathematical Department A		
Equality of two complex numbers:			
Two complex numbers are equal if and only if the two real parts are equal and the two imaginary parts are equal.			
If: $a + b i = c + d i$ then : $a = c$ and $b = d$	and <i>vice versa</i> .		
Example 3			
Find the values of x and y which satisfy each of the following equations:			
1 $(2x + 1) + 4y$ i = 5 – 12 i	2 $2x - y + (x - 2y)$ i = 5 + i		
3 $2x - 3 + (3y + 1)$ i = 7 + 10 i	4 $3x i + 5 - 3 i - 2 y = 2 - i$		
Solution			
1 :: $(2x + 1) + 4y$ i = 5 – 12 i	2 :: $2x - y + (x - 2y)$ i = 5 + i		
$\therefore (2x+1) = 5$ & $4y = -12$	$\therefore (2x - y) = 5$ & $(x - 2y) = 1$		
$\therefore 2x = 5 - 1 = 4$ $y = \frac{-12}{4}$	By using calculator:		
$\therefore x = 2$ $y = -3$	$\underline{\mathbf{Mode}} \to \underline{\mathbf{EQN}} \to \underline{1}$		
	$\therefore x = 3 \qquad \qquad \mathbf{y} = 1$		
8 :: $2x - 3 + (3y + 1)i = 7 + 10i$	3x i + 5 - 3 i - 2 y = 2 - i		
$\therefore (2x-3) = 7$ & $(3y+1) = 10$	$\therefore (3x-3) = -1$ & $(5-2y) = 2$		
$\therefore 2x = 7 + 3 = 10$ $3y = 10 - 1 = 9$	$\therefore 3x = -1 + 3 = 2$ $-2y = 2 - 5 = -3$		
$\therefore x = 5 \qquad \qquad \mathbf{y} = 3$	$\therefore x = \frac{2}{3} \qquad \qquad y = \frac{3}{2}$		

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

First	Secon	dary
		J

Futures Language Schools Mathematical Department 2021-2022

موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

2021-2022

PRACTICE (2)

Q1: Simplify 14 - (9 - 8i) + (3 - 12i) - (9 - 4i).

A
$$35 - 24$$

B -1
C $21 - 24$

D 3-16i

Q2: If the complex numbers 7 + ai and b - 3i are equal, what are the values of a and b?

Q3: What is (-7 - i) - (3 - 4i) + (2 - 7i)? A -2 - 12iB -6 + 2iC -12 + 10iD -8 - 4i

17

First Secondary	
-----------------	--

Futures Language Schools Mathematical Department

2021-2022

Conjugate Numbers:

The two numbers a + b i and a - b i are called conjugate numbers.

For example: 4 - 3i and 4 + 3i are two conjugate numbers.

Example **5**

Find in the simplest form, the value of each of the following:

Futures Language Schools Mathematical Department

PRACTICE (3)

Q1: Expand and simplify (4 - i)(3 + 2i).

A 14 + 5i

B 12 + 3i

C | 12 − 2i

D 12 + 7i

E | 10 + 5*i*

Q2: Multiply (-3 + i) by (2 + 5i). A -6 + 5iB -6 - 18iC -1 - 13i

 $\begin{array}{c|c} D & -6 - 8i \\ \hline E & -11 - 13i \end{array}$

Q3: Simplify $(3 - 6i)^2(2 - i)$.

A -15iB -25 - 37iC 8 - 11i

D -90 - 45i

E -27 - 36*i*

Futures Language Schools Mathematical Department

PRACTICE (4)

Q1: Simplify $\frac{2}{3+i}$.			
A	$\frac{(3-i)}{10}$		
В	$\frac{(3-i)}{5}$		
С	3 – i		
D	$\frac{2}{3} + 2i$		
E	$\frac{2}{3}-2i$		

Q2: I	Put $\frac{-18-9i}{3i}$ in the form $a+bi$.
A	-3 + 6i
В	27 — 54 <i>i</i>
С	3 + 54 <i>i</i>
D	-9 + 18 <i>i</i>

FUTURES EDUCATIONAL SYSTEMS

7 Electricity: find the total current intensity of the electric current passing through two resistances connected in parallel in a closed circuit if the current intensity in the first resistance is (4 - 2i) ampere and in the second one is $\frac{6+3i}{2+i}$ ampere

www.Cryp2Day.con موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

 $\therefore \Delta = 0$

2021-2022

First Term | Algebra

Example **2**

If the two roots of the equation: $x^2 - kx + 2k - 4x + 5 = 0$ are equal.

Find the real value of k and hence find the two roots.

Solution

 $x^{2} - kx + 2k - 4x + 5 = 0$ $\mathbf{b} = -\mathbf{k} - \mathbf{4}$ c = 2 k + 5a = 1

: The two roots of the equation are equal $\therefore \Delta = b^2 - 4 ac = (-k - 4)^2 - 4 \times 1 \times (2k + 5) = 0$ $\therefore k^2 - 4 = 0$ $\therefore k^2 + 8k + 16 - 8k - 20 = 0$ \therefore k = $\pm\sqrt{4}$ = ±2 $\therefore k^2 = 4$

If $k = 2$	If $k = -2$
$\therefore x^2 - kx + 2k - 4x + 5 = 0$	$\therefore x^2 - kx + 2k - 4x + 5 = 0$
$\therefore x^2 - (2) x + 2 (2) - 4 x + 5 = 0$	$\therefore x^2 - (-2) x + 2 (-2) - 4 x + 5 = 0$
$\therefore x^2 - 6x + 9 = 0$	$\therefore x^2 - 2x + 1 = 0$
$\therefore x = 3$	$\therefore x = 1$

$a x^2 + b x + c = 0$

Let the two roots L and M:

Sum of roots $=$ $\frac{-b}{a} = \frac{-coeff of x}{coeff of x^2}$	of x Product of roo	$-\frac{c}{-}$	Free Term
	$f x^2$ 11000000 1100	1100000000000000000000000000000000000	coeff of x^2

Notes:

1. Additive inverse.	(L , – L)
2. Multiplicative inverse.	$(L, \frac{1}{L})$
3. Double (twice).	(L , 2 L)
4. Three times the other.	(L, 3 L)
5. Exceeds the other by 3.	(L, L+3)

www.Cryp2Day.com موقع مذكرات جآهزة للطباعة

Futures Language Schools Mathematical Department

2021-2022

Example 3

Find the sum and product of two roots:

(1) $2x^2 + 3x - 5 = 0$ Sum of roots $= \frac{-b}{a} = \frac{-3}{2}$ Product of roots $= \frac{c}{a} = \frac{-5}{2}$ (2) $3x^2 + 5 = 4x$ $3x^2 - 4x + 5 = 0$ Sum of roots $= \frac{-b}{a} = \frac{4}{3}$ Product of roots $= \frac{c}{a} = \frac{5}{3}$ (3) $3x^2 - 12x - 17 = 0$ Sum of roots $= \frac{-b}{a} = \frac{12}{3} = 4$ Product of roots $= \frac{c}{a} = \frac{-17}{3}$ Example (2)

Find the value of β which make one of the two roots of the equation: $x^2 + \beta x - 50 = 0$ twice the additive inverse of the other root. *Solution*

Let the two roots be: L and -2L

 $Sum of roots = \frac{-b}{a} = \frac{-\beta}{1} = -\beta$ Sum of roots (L & -2L) = -L $∴ -\beta = -L$ $∴ \beta = L$ $∴ \beta = L$ $∴ Product of roots = \frac{c}{a} = \frac{-50}{1} = -50$ $∴ Product of roots (L & -2L) = -2L^2$ $∴ L^2 = 25$

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

 $\therefore \beta^2 = 25 \qquad \qquad \therefore \beta = \pm \sqrt{25} = \pm 5$

2021-2022

Example **5**

If $(a - 2) x^2 + (a + 1) x = 6$, then find the value of a in each of the following: i) The sum of its roots is 3. ii) The product of the two roots is -6. Solution $(a - 2) x^{2} + (a + 1) x = 6$ \therefore (a - 2) x^{2} + (a + 1) x - 6 = 0 i) The sum of its roots is 3. : Sum of roots = $\frac{-b}{a} = \frac{-(a+1)}{(a-2)} = 3$ $\therefore 3(a-2) = -(a+1)$:: 3a - 6 = -a - 1 $\therefore a = \frac{5}{4}$ $\therefore 3 a + a = -1 + 6$ $\therefore 4 a = 5$ ii) The product of the two roots is -6. : Product of roots $=\frac{c}{a}=\frac{-6}{(a-2)}=-6$ $\therefore (a-2) = 1 \qquad \qquad \therefore a = 1+2 \qquad \qquad \therefore a = 3$

Example 6

25

Find the satisfying condition which makes one of the roots of the equation: a $x^2 + b x + c = 0$ equal the additive inverse of twice the other root.

Solution

موقع مذكرات ماهزة للطباعة

First Secondary	Futures Language Schools	2021-2022
PRACTICE (1)		
Q1: Given that <i>m</i> is a real number, and the equation find the interval which contains <i>m</i> . A $]-\infty,0]$ B $]-\infty,32]$ C $]-\infty,0[$ D $[0,\infty[$ E $]0,\infty[$	$(4m+8)x^2 - 4mx + m = 0$ does not	have real roots,
Q2: If the roots of the equation $x^2 - 8(k+1)x$.	+ 64 = 0 are equal, find the possib	le values of k .
A {-3,1}		
B {-1}		
C {3,-1}		
D $\{1, -1\}$		
E {-33}		
Q3: If the roots of the equation $4x^2 - kx + 1 =$ A 4, -4 B -4 C 12, -12 D 12	0 are equal, what are the possible	values of k?
Q4: Given that the equation $x^2 - (-2m + 28)x + m^2$ m. A $m \in [7, \infty[$ B $m \in]-\infty, 7]$ C $m \in]7, \infty[$ D $m \in]-\infty, 7[$	² = 0 has no real roots, find the interva	al that contains
26 FUTURES	First Ter	rm <mark>Algebra</mark>
	موقع مذكرات ب	

First Secondary	Futures Language Schools	2021-2022
6 Find the value of K in each of the followin A If the two roots of the equation $x^2 + 4x$	g cases: + $\mathbf{K} = 0$ are real different.	
B If the two roots of the equation $x^2 - 3x$	$+2+\frac{1}{K}=0$ are equal.	
C If the two roots of the equation K $x^2 - 8$	3x + 16 = 0 are complex and no	t real.
7 If L and M are two rational numbers, then p L x^2 + (L – M) x – M = 0 are two rational m	prove that the two roots of the umbers .	equation:
 8 Population of Egypt in 2013 is estimated by Z = n² + 1.2 n + 91 where (n) is the number of in millions. A What is the population in 2013? B Estimate the population in 2023. C Estimate the number of years at which the D Write a report showing the reasons for way of its treatment. 	the relation: of years and (z) is the number of he population will be 334 milli which the population is increasi	of populations
9 Discover the error: What is the number of	solutions of the equation $2x^2 - $	6x = 5 in R
Ahmed's answer $b^2-4ac = (-6)^2 - 4 \times 2 \times 5$ = 36 - 40 = -4 The discriminant is negative, then there is no real solutions	b^2 - 4ac = (- 6) ² - 4 × 2 (- 5) = 36 + 40 = 76 the discriminant is positive, the two real different solutions	arim's answer n there are
10 If the two roots of the equation $x^2 + 2$ (K – 1) real values of K , and the two roots.) <i>x</i> + (2K + 1) =0 are equal, then	n find the

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

28

Futures Language Schools Mathematical Department 2021-2022

PRACTICE (1)

Q1: Find, in its simplest form, the quadratic equation whose roots are $8\sqrt{11}$ and $-\sqrt{11}$.

Q2: Find, in its simplest form, the quadratic equation whose roots are m + 3n and m - 3n.

A $x^{2} - 2mx + m^{2} - 9n^{2} = 0$ B $x^{2} + 2x + m^{2} - 9n^{2} = 0$ C $x^{2} - 6nx + m^{2} - 9n^{2} = 0$ D $x^{2} - 2x + m^{2} + 9n^{2} = 0$ E $x^{2} - 2mx + m^{2} - 3n^{2} = 0$

Q3: What is the simplest form of the quadratic equation whose roots are $\frac{13}{2}$ and $\frac{5}{3}$?

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department A 2021-2022
Example 2 If α , β are the roots of the equation x^2 Form the equation whose roots are:	$-6x + 10 = 0$ $\boxed{\bigcirc \alpha + \beta = \frac{-b}{a} = 6}$
(a) $\alpha + 2$, $\beta + 2$ (b) α^2 , (c) $\frac{1}{\alpha}$, $\frac{1}{\beta}$ (d) $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ Solu	$ \begin{array}{c} \beta^{2} \\ \frac{\beta}{\alpha} \\ \frac{\beta}{\alpha} \\ \frac{\alpha^{2} + \beta^{2}}{\alpha^{2} + \beta^{2}} = 6^{2} - 2(10) \\ \hline 3 \alpha^{2} + \beta^{2} = 16 \end{array} $
(a) $\alpha + 2$, $\beta + 2$ \therefore The sum of roots = $(\alpha + 2) + (\beta + 2)$ \therefore The product of roots = $(\alpha + 2)(\beta + 2)$ $= \alpha \beta + 2(\alpha + \beta)$ \therefore The equation is: $x^2 - 10x + 26 = 0$	$a = \alpha + \beta + 4 = 6 + 4 = 10$ (a) = \alpha \beta + 2\alpha + 2\beta + 4 (b) + 4 = 10 + 2 \times 6 + 4 = 26
(b) α^2 , β^2 : The sum of roots = $\alpha^2 + \beta^2 = 16$: The product of roots = $\alpha^2 \times \beta^2 = (\alpha \beta)$: The equation is: $x^2 - 16x + 100 = 0$	$(3)^2 = 10^2 = 100$
(c) $\frac{1}{\alpha}$, $\frac{1}{\beta}$ \therefore The sum of roots $= \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{6}{10}$ \therefore The product of roots $= \frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha \beta} =$ \therefore The equation is: $x^2 - \frac{3}{5}x + \frac{1}{10} = 0 \times$	$= \frac{3}{5}$ $\frac{1}{10}$ 10 $10x^{2} - 6x + 1 = 0$
(d) $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ \therefore The sum of roots $= \frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} =$ \therefore The product of roots $= \frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$ \therefore The equation is: $x^2 - \frac{8}{5}x + 1 = 0 \times$	$\frac{16}{10} = \frac{8}{5}$ 5 $5x^2 - 8x + 5 = 0$

31

2021-2022

Example **3**

If L & M are the roots of the equation a $x^2 + b x + b = 0$ Prove that $\frac{1}{L} + \frac{1}{M} + 1 = 0$ and form the equation whose roots are $\frac{1}{L}$, $\frac{1}{M}$. Solution $\therefore L + M = \frac{-b}{a}$ $\therefore L M = \frac{b}{a}$ $\therefore \frac{1}{L} + \frac{1}{M} = \frac{M+L}{LM} = (L + M) \div (L M) = \frac{-b}{a} \div \frac{b}{a} = -1$ $\therefore \frac{1}{L} + \frac{1}{M} + 1 = 0$ \therefore The sum of roots $= \frac{1}{L} + \frac{1}{M} = \frac{M+L}{LM} = -1$ \therefore The product of roots $= \frac{1}{L} \times \frac{1}{M} = \frac{1}{LM} = \frac{a}{b}$ \therefore The equation is: $x^2 + x + \frac{a}{b} = 0$ $\times b$ \therefore The equation is: $bx^2 + bx + a = 0$

Example **4**

If the ratio between the two roots of the equation:

$$x^{2} + a x + b = 0$$
 equals 2 : 3 prove that: 25 b = 6 a²

Solution

Let the two roots be: $2 \alpha \& 3 \alpha$

- $\therefore \text{ The sum of roots} = \frac{-a}{1} = -a$
- \therefore 5 α = a
- : The product of roots $=\frac{b}{1}=b$

$$\therefore \mathbf{6} \ \boldsymbol{\alpha}^2 = \mathbf{b}$$
$$\therefore \mathbf{6} \times \frac{\mathbf{a}^2}{25} = \mathbf{b}$$

$$\therefore \text{ Sum of roots} = 2 \alpha + 3 \alpha = 5 \alpha$$

$$\therefore \alpha = -\frac{a}{5}$$

$$\therefore \text{ Product of roots} = 2 \alpha \times 3 \alpha = 6 \alpha^2$$

$$\therefore 6 \left(-\frac{a}{5}\right)^2 = b$$

$$\therefore 25 b = 6 a^2$$

2021-2022

Example **5**

Procedure ① L + M = $\frac{-b}{2} = \frac{-2}{1} = -2$ If L, M are the roots of equation: $3 - 2x - x^2 = 0$ Form the equation whose \bigcirc L M = $\frac{c}{a} = \frac{-3}{1} = -3$ Roots are $L + \frac{1}{M}$, $M + \frac{1}{L}$ $L^2 + M^2 = (-2)^2 - 2(-3)$ $3 L^2 + M^2 = 10$ Solution $3 - 2x - x^2 = 0$ $\Rightarrow x^2 + 2x - 3 = 0$ \therefore The sum of roots $= \left(L + \frac{1}{M}\right) + \left(M + \frac{1}{L}\right) = (L + M) + \left(\frac{1}{M} + \frac{1}{L}\right)$ $= (L + M) + \left(\frac{L + M}{L M}\right) = -2 + \left(\frac{-2}{-2}\right) = \frac{4}{2}$: The product of roots = $\left(L + \frac{1}{M}\right)\left(M + \frac{1}{L}\right) = LM + 1 + 1 + \frac{1}{LM}$ $= -3 + 1 + 1 + \frac{1}{-3} = -\frac{4}{3}$ \therefore The equation is: $x^2 - \frac{4}{3}x - \frac{4}{3} = 0$ $\times 3$ $\therefore \text{ The equation is: } 3x^2 - 4x - 4 = 0$ Example 6

If (1 + i) is one of the roots of the equation $x^2 - 2x + a = 0$ where $a \in \mathbb{R}^*$ then find: (A) The other root (B) the value of a

Solution

Let the other root be: L $\therefore \text{ Sum of roots} = \frac{2}{1} = 2 \qquad \qquad \therefore (1 + i) + L = 2$ $\therefore L = 2 - (1 + i) = (1 - i) \qquad \qquad \therefore \text{ The other root} = (1 - i) \qquad \rightarrow (\mathbf{A})$ $\therefore \text{ Product of roots} = \frac{a}{1} = a \qquad \qquad \therefore (1 + i) (1 - i) = a$ $\therefore 1 + 1 = a \qquad \qquad \therefore a = 2 \qquad \rightarrow (\mathbf{B})$

> ww.Cryp2Day.com موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

PRACTICE (2)

Q1: Given that L + 3 and M + 3 are the roots of the equation $x^2 + 8x + 12 = 0$, find, in its simplest form, the quadratic equation whose roots are L and M.

Q2: Given that *L* and *M* are the roots of the equation $x^2 - 2x + 5 = 0$, find, in its simplest form, the quadratic equation whose roots are L^2 and M^2 .

A $x^{2} + 14x + 25 = 0$ B $x^{2} + 8x + 25 = 0$ C $x^{2} - 6x + 25 = 0$ D $x^{2} + 6x + 25 = 0$ E $x^{2} - 6x + 10 = 0$

Q3: Given that *L* and *M* are the roots of the equation $x^2 - 3x + 12 = 0$, find, in its simplest form, the quadratic equation whose roots are $\frac{1}{L^2}$ and $\frac{1}{M^2}$.

D $144x^2 + 5x + 1 = 0$

$$E \quad 144x^2 - 15x - 1 = 0$$

34

Futures Language Schools Mathematical Department

2021-2022

Q4: Given that *L* and *M* are the roots of the equation $x^2 - 13x - 5 = 0$, find, in its simplest form, the quadratic equation whose roots are L + 1 and M + 1.

A $x^{2} - 15x + 9 = 0$ B $x^{2} - 11x + 9 = 0$ C $x^{2} + 15x + 9 = 0$ D $x^{2} - 15x + 8 = 0$ E $x^{2} + 11x + 8 = 0$

Q5: If L and M are the roots of the equation $x^2 + 20x + 15 = 0$, what is the value of $\frac{1}{M} + \frac{1}{L}$
$\left[A\right] -\frac{3}{4}$
B -35
C $-\frac{4}{3}$
$D \frac{4}{3}$
E 35

Q6: Given that *L* and *M* are the roots of the equation $3x^2 - 6x + 7 = 0$, find, in its simplest form, the quadratic equation whose roots are L + M and LM.

35
Futures Language Schools Mathematical Department

2021-2022

Q7: If L and M are the roots of the equation $x^2 - 19x + 9 = 0$, find, in its simplest form, the quadratic equation whose roots are L - 2 and M - 2.

A $x^{2} - 23x - 25 = 0$ B $x^{2} - 23x + 32 = 0$ C $x^{2} - 15x - 25 = 0$ D $x^{2} - 15x + 32 = 0$ E $x^{2} + 15x - 25 = 0$

Q8: Given that *L* and *M* are the roots of the equation $x^2 + x - 2 = 0$, find, in its simplest form, the quadratic equation whose roots are $L^2 + M$ and $M^2 + L$.

A $x^{2} - x - 5 = 0$ B $x^{2} + 4x - 5 = 0$ C $x^{2} - 4x - 5 = 0$ D $x^{2} - 4x + 9 = 0$ E $x^{2} + x - 5 = 0$

Q9: Given that *L* and *M* are the roots of the equation $3x^2 + 16x - 1 = 0$, find, in its simplest form, the quadratic equation whose roots are $\frac{L}{2}$ and $\frac{M}{2}$.

- $C \quad 12x^2 + 32x + 1 = 0$

$$x^2 - 32x - 1 = 0$$

$$E \mid 12x^2 + 32x - 1 = 0$$

36

Futures Language Schools Mathematical Department

2021-2022

- (19) Find the quadratic equation in which each of the two roots exceeds 1 than one of the two roots of the equation $x^2 7x 9 = 0$
- 20 Find the quadratic equation in which each of its two roots equals the square of the corresponding root of the equation : $x^2 + 3x 5 = 0$
- (21) If L and M are the two roots of the equation $x^2 7x + 3 = 0$, then find the quadratic equation whose roots are:

A 2 L, 2 M **B** L + 2, M + 2 **C** $\frac{2}{L}, \frac{2}{M}$ **D** L + M, L M

43

Futures Language Schools A

2021-2022

l

Q2: For which values of x is the function $f(x) = 8x - 13$ positive?
$\boxed{A} x \le \frac{13}{8}$
$\boxed{B} x > -\frac{13}{8}$
$\boxed{C} x > \frac{13}{8}$
$\boxed{\mathbf{D}} x \ge \frac{13}{8}$
$\boxed{\text{E}} x < \frac{13}{8}$
Q3: Determine the sign of the function $f(x) = (x - 8)(x - 7)$.
A The function is positive when $x \in \mathbb{R} - [7, 8]$, the function is negative when $x \in [7, 8]$, and the function equals zero when $x \in \{7, 8\}$.
B The function is positive when $x \in \mathbb{R} - \{7, 8\}$, the function is negative when $x \in [7, 8]$, and the function equals zero when $x \in \{7, 8\}$.
C The function is positive when $x \in [7, 8]$, the function is negative when $x \in \mathbb{R} - \{7, 8\}$, and the function equals zero when $x \in \{7, 8\}$.
D The function is positive when $x \in [7, 8]$, the function is negative when $x \in \mathbb{R} - [7, 8]$, and the function equals zero when $x \in \{7, 8\}$.
Q4: Determine the sign of the function $f(x) = x^2 - 16x + 64$.
A The function is positive when $x \in \mathbb{R} - \{8\}$, and the function equals zero when $x \in \{-8, 8\}$.
B The function is positive for all $x \in \mathbb{R}$.
C The function is positive when $x \in \mathbb{R} - \{-8\}$, and the function equals zero when $x = -8$.
D The function is positive when $x \in \mathbb{R} - \{8\}$, and the function equals zero when $x = 8$.
E The function is positive when $x \in \mathbb{R} - \{-8, 8\}$, and the function equals zero when $x \in \{-8, 8\}$.

44

First Secondary	Futures Language Schools Mathematical Department
Q5: Determine the sign of the fu	nction $f(x) = -x^2 - 2x - 7$.

The function is positive for all $x \in \mathbb{R} - \{0\}$, and the function equals zero when x = 0.

The function is negative for all $x \in \mathbb{R} - \{0\}$, and the function equals zero when x = 0.

C The function is positive for all $x \in \mathbb{R}$.

The function is negative for all $x \in \mathbb{R}$.

Q6: Determine the interval in which the function $f(x) = -15 - 8x - x^2$ is NOT negative.

A $\mathbb{R} - [-5, -3]$ B [-5, -3]C [3, 5]D $\mathbb{R} - [3, 5]$

A

В

D

Е

R

Q7: What are the values of x for which the functions f(x) = x - 5 and $g(x) = x^2 + 2x - 48$ are both positive?

A x > -8B x > 6C x < -8D x < 6E x > 5

45

First Term | Algebra

2021-2022

8 The figure opposite represents a first degree function in x:
A The function is positive in the interval
B the function is negative in the interval

46

47

2021-2022

Futures Language Schools Mathematical Department

PRACTICE

Q1:	Solve $x^2 - 2x < 0$ graphically.
A	<i>R</i> –]0, 2[
В	{0,2}
C	[0,2]

D]0,2[

E R - [0, 2]

Q2: Solve $x^2 - x - 6 < 0$. A [-2,3] B R -]-2,3[C R - [-2,3]D $\{-2,3\}$ E]-2,3[

Q3: Solve $5(x - 1) - x(7 - x) \le x^2$ graphically. A]-2.5, ∞ [B]0, 2.5[C [-2.5, ∞ [D]- ∞ , 2.5]

E [-2.5,0[

50

Futures Language Schools Mathematical Department

2021-2022

Q4: Solve $x^2 - x - 6 > 0$ graphically. A [-2, 3] B {-2, 3} C R -]-2, 3[D]-2, 3[

E R - [-2, 3]

Q5: Solve $-x^2 + 9 > 0$ graphically.

A [-3,3]B R - [-3,3]

C]–3,3[

D {-3,3}

E R−]−3,3[

Q6: Solve
$$(2-3x) - (x-1) \ge -4 - (x-2)^2$$
 graphically.
A $\left[-\infty, 4 - \sqrt{5}\right] \cup \left[4 + \sqrt{5}, \infty\right[$
B $\left[-\infty, 4 - \sqrt{5}\right] \cup \left[4 + \sqrt{5}, \infty\right[$
C $\left[-\infty, 4 - \sqrt{5}\right] \cup \left[4 + \sqrt{5}, \infty\right[$
D $\left[-\infty, 4 - \sqrt{5}\right[$
E $\left]4 + \sqrt{5}, \infty\right[$

51

Futures Language Schools Mathematical Department

2021-2022

Q7: Solve $2x^2 < 3x + 5$ graphically.
$\begin{bmatrix} A \end{bmatrix} -1, \frac{5}{2} \begin{bmatrix} \\ \\ \end{bmatrix}$
$\boxed{B} R - \left[-1, \frac{5}{2}\right]$
$\boxed{C}\left[-1,\frac{5}{2}\right]$
D $R-\left]-1,\frac{5}{2}\right[$
$\boxed{E}\left\{-1,\frac{5}{2}\right\}$

Q8: Solve $(2 - x)(x - 1) \ge 2 - (x - 1)^2$ graphically. [A]]3, ∞ [

- _____ B [1,∞[
- C]−∞,3[
- D [3,∞[E]−∞,3]

Q9: Find all solutions to the inequality $x^2 + 121 \le 0$. Write your answer as an interval.

Futures Language Schools Mathematical Department

2021-2022

1 - 6

Quadratic inequalities

Find the solution set of each of the following quadratic inequalities:

$1 x^2 \leq 9$	
2 $x^2 - 1 \le 0$	
(3) $2x - x^2 < 0$	
$(4) x^2 + 5 \leq 1$	
5 $(x-2)(x-5) < 0$	
6 $x(x+2) - 3 \leq 0$	
$7 (x-2)^2 \leq -5$	
$\textcircled{8} 5 - 2x \leq x^2$	
$\bigcirc x^2 \ge 6 x - 9$	
10 $3x^2 \le 11x + 4$	
$(1) x^2 - 4x + 4 \ge 0$	

FUTURES IEDUCATIONAL SYSTEMS

53

Futures Language Schools Mathematical Department

2021-2022

TINITE TECT

		UNII	IESI	
First : c	hoose the corre	ct answer from the	given answers:	
1 The	solution set of th	the equation $x^2 - 6x + 9$	$9 = 0$ in \mathbb{R} is:	
A	{-3}	B {3}	C {-3, 3}	$\square \phi$
2 The	solution set of th	ne equation $x^2 + 4 = 0$	is :	
A	{-2}	B {2}	C {-2, 2}	D {-2i, 2i}
3 The	simplest form of	f the expression $(1 - i)$) ⁴ is :	
A	-4	B 4	C -4i	D 4 i
4 If th	ne two roots of th	e equation $x^2 - 4x + K$	L = 0 are real and different of the second secon	rent , then:
A	K > 4	B K < 4	C K = 4	$D K \ge 4$
5 If th	ne two roots of th	e equation $x^2 - 12x + 1$	M = 0 are equal, then	M equals:
A	-36	B -6	C 6	D 36
6 The	e quadratic equati	on whose roots are 2 -	– 3i and 2 + 3i is :	
A	$x^2 + 4x + 13 = 0$	B $x^2 - 4x + 13 = 0$	c $x^2 + 4x - 13 = 0$	D $x^2 - 4x - 13 = 0$
7 If f	$: [-2, 4] \longrightarrow \mathbb{R}$	where $f(x) = 2 - x$, t	hen the sign of the fur	ction f is negative in
the	interval:			
A	[-2,2[B [-2,2]	C [2,4]	D]2 , 4]
8 If o	ne of the two roo	ts of the equation x^2 -	-(M+2)x+3=0 is t	he additive inverse of
the	other, then M equ	ials:		
(A)	-3	B -2	(C) 2	D 3
(9) If one of the two roots of the equation $2x^2 + 7x + K = 0$ is the multiplicative inverse of				
	-7	B -2	C 2	D 7
(10) The	solution set of th	the inequality $x^2 + x - 2$	2 < 0 is :	
A]-2,1[B [-2,1]	C ℝ − [−2 , 1]	▶ ℝ –]−2 , 1[
54	FUTURES EDUCATIONAL S V S V E M S	www.Cru	p2Day.com	First Term <mark>Algebra</mark>

www.Cryp2Day.com موقع مذكرات باهزة للطباعة

First Secondary	Futures Language Schools	2021-2022	
(16) Find the values of a and b in each of the following :			
A $(7-3i) - (2+i) = a + bi$	B $(2-5i)(3+i) = a+bi$		
$\bigcirc \frac{10}{2+i} = a + b i$	$\bigcirc \frac{6-4i}{1-i} = a+b i$		
(17) Find the value of M in each of the following :			
A If the two roots of the equation $2x^2 + Mx + 18 = 0$ are equal			
B If one of the two roots of the equation $x^2 + 3x + M = 0$ is twice the other root			
18 Investigate the sign of the function f in each of the following :			
A $f(x) = x^2 - 2x - 8$ B $f(x) = 4 - 3x - x^2$			
(19) Find the solution set of each of the following inequalities :			
A $x^2 - x - 12 > 0$	B $x^2 - 7x + 10 \le 0$		

Geometry

 $c_{1g}^{2}x = c_{0s}^{2}x / s_{1n}^{2}x$

 $=1(m / Ma) \pm RbT$

es 20

حمّل التطبيق على موبايلك الأندرويد أو الأيفون موقع مذكرات جاهزة للطباعة - www.cryp2day.com

First Secondary

First Term

Student Name:

 $P = \sqrt{\frac{2}{(2 + bx + c)}}$

Futures Language Schools Mathematical Departmen

Example **1**

The two polygons ABCD & XYZL are similar find the missing elements?

2021-2022

Solution

∴ polygon ABCD ~ polygon XYZL \therefore m (\angle A) = m (\angle X) = 65° $\therefore \frac{AB}{XY} = \frac{BC}{YZ} = \frac{CD}{ZL} = \frac{DA}{LX}$ $\therefore AB = 15 cm$ YZ =,

$$\therefore \frac{AB}{3} = \frac{30}{YZ} = \frac{CD}{8} = \frac{20}{4}$$

6 cm & CD = 40 cm

Example **2**

In the figure opposite: polygon ABCD ~ polygon EFGH.

① Find the scale factor of similarity of polygon ABCD to polygon EFGH. **2** Find the values of *x* and y.

Solution

: polygon ABCD ~ polygon EFGH

 \therefore The scale factor o similarity $= \frac{DA}{HE} = \frac{12}{8} = \frac{3}{2}$ ΔR $\therefore \frac{(y+2)}{6} = \frac{15}{x} = \frac{12}{8}$ RC CD ΠΔ

$$\therefore \frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{DA}{HE}$$
$$\therefore x = 10 \text{ cm}$$

 $\therefore y + 2 = 9$

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

First Secondary	Futures Language So Mathematical Depar	tment A 2021-2022	
Similarity ratio of two polyg	ons		
Let K be the similarity ratio of polygon M_1 to polygon M_2			
If: $K > 1$ then polygon	If: $K > 1$ then polygon M_1 is an enlargement of polygon M_2		
0 < K < 1 then polygon	\mathbf{M}_1 is a shrinking of polygon	M_2	
K = 1 then polygon	\mathbf{M}_1 is congruent to polygon b	M ₂	
In general: you can use the similar figures.	similarity ratio in calculation	of the dimensions of	
Example G			
ABCD is a rectangle in which $AB = 5$ cm and $BC = 8$ cm. Find the dimensions of another rectangle similar to it, if:			
① Scale factor = 1.4	② Scale factor	= 0.6	
	Solution		
Let the rectangle XYZL \sim the	rectangle ABCD		
$\therefore \frac{XY}{AB} = \frac{YZ}{BC} = \frac{ZL}{CD} = \frac{XL}{AD} = \text{scale factor}$			
① If the scale factor $= 1.4$	$\therefore \frac{XY}{AB} = \frac{YZ}{BC} = 1.4$	$\therefore \frac{\mathrm{XY}}{5} = \frac{\mathrm{YZ}}{8} = 1.4$	
\therefore XY = 7 cm &	YZ = 8.4 cm	[Enlargement]	
⁽²⁾ If the scale factor $= 0.6$	$\therefore \frac{XY}{AB} = \frac{YZ}{BC} = 0.6$	$\therefore \frac{\mathrm{XY}}{5} = \frac{\mathrm{YZ}}{8} = 0.6$	
\therefore XY = 3 cm &	YZ = 4.8 cm	[Shrinking]	

Futures Language Schools Mathematical Department 2021-2022

3) Two right angle triangles are similar if one of the acute angles in one is equal to the measure of a cote angle of other.

The Second Case:

Two triangles are similar if the measure of an angle of a triangle equals the measure of an angle of another triangle, and the lengths of the sides enclosing by these two angles are proportional.

If $m (\angle A) = m (\angle X)$

And $\frac{AB}{XY} = \frac{AC}{XZ}$

 $\therefore \Delta ABC \sim \Delta XYZ$

Fi www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

First Secondary	Futures Language Sch Mathematical Departm	ools A 2021-2022
The Third Case:		
Two triangles are similar if	the corresponding sides of	two triangles are
proportional.	В	E
If $\frac{AB}{AB} - \frac{BC}{BC} - \frac{AC}{AC}$	A	<
DE EF DF		F
$\frac{\Delta ABC \sim \Delta DEF}{$	C	2
Example 0	D	В
In the opposite figure:		
$\overline{\text{AD}}$ // $\overline{\text{CB}}$ Prove that:		\sim 1
(1) \triangle AED ~ \triangle BEC		
$(2) AE \cdot EC = DE \cdot EB$		С
In \triangle AED and \triangle BEC:	Solution	
$\therefore \overline{AD} // \overline{CB}$	$\therefore \Delta \text{AED} \sim \Delta \text{BEC}$	\rightarrow (1)
$\therefore \frac{AE}{AE} = \frac{ED}{AD} = \frac{AD}{AD}$	\therefore AE.EC = DE.EB	\rightarrow (2)
BE EC BC		(-)
Example 2	14 cm	E C
In the opposite figure:	A	12 cm 15 cm
ABC is a triangle in which: $\overline{DD} / \overline{DD} = 14$		
ED // CB, AE = 14 cm, ED = 12 BD = 4 cm and BC = 15 cm	2 cm,	D 4 cm
Find the length of each of \overline{AC}	\overline{AD} and \overline{AB}	B
	Solution	
In \triangle ABC and \triangle ADE:		
$: \overline{\text{BC}} / \overline{\text{DE}}$	$\therefore \Delta ABC \sim \Delta ADE$	
$\therefore \frac{AB}{AB} = \frac{BC}{BC} = \frac{AC}{AB}$	$\therefore \frac{AD+4}{AD+4} = \frac{15}{AD} = \frac{AC}{AD}$	
AD DE AE	AD 12 14 AD+4 15 5	
\therefore AC = 17.5 cm	$\therefore \frac{1}{\text{AD}} = \frac{1}{12} = \frac{1}{4}$	
:.5 AD = 4 AD + 16	\therefore AD = 16 cm	
$\therefore AB = 16 + 4 = 20 cm$		
10 FUTURES EDUCATIONAL SY SY EM S	Fin موقع مذكرات جاهزة للطباعة	rst Term Geometry

ww.Cryp2Day.com موقع مذكرات جاهزة للطباعة

Futures Language Schools

2021-2022

Example **5**

In the opposite figure:

- AB = 6 cm, BC = 12 cm, CA = 8 cm
- OC = 3 cm, DB = 4.5 cm, OD = 6 cm.

Prove that:

- (1) \triangle ABC ~ \triangle DBO.
- (2) \triangle EOC is isosceles.

In \triangle ABC and \triangle DBO:

$\therefore \frac{AB}{DB} = \frac{6}{4.5} = \frac{4}{3}$		
$\therefore \frac{BC}{BO} = \frac{12}{9} = \frac{4}{3}$		
$\therefore \frac{AC}{DO} = \frac{8}{6} = \frac{4}{3}$		
$\therefore \frac{AB}{DB} = \frac{BC}{BO} = \frac{AC}{DO} = \frac{4}{3}$		
$\therefore \Delta ABC \sim \Delta DBO$		
\therefore m (\angle BCA) = m (\angle BOD)		
$:: m (\angle BOD) = m (\angle EOC)$		
\therefore m (\angle BCA) = m (\angle EOC)		

 $\therefore \Delta$ EOC is isosceles

 \rightarrow (1)

From similarity

V.O.A.

 \rightarrow (2)

12

Futures Language Schools Mathematical Department

2021-2022

Corollary

Δ DAB ~ Δ ACB ~ Δ DC.	A (Wh	y?)
Deduce the Euclid's	<u>s theorem:</u>	A
(1) $(AB)^2 = BD \cdot BC$	(2) $(AC)^2 = CD \cdot BC$	
(3) $(AD)^2 = BD \cdot CD$	(4) $AD = \frac{AB \times AC}{BC}$	
	Proof	C D B
$\therefore \Delta DAB \sim \Delta ACB$		
$\therefore \frac{\mathrm{DA}}{\mathrm{AC}} = \frac{\mathrm{AB}}{\mathrm{CB}} = \frac{\mathrm{DB}}{\mathrm{AB}}$	$\therefore (AB)^2 = BD \cdot CB$	1
$\therefore \Delta DCA \sim \Delta ACB$		
$\therefore \frac{DC}{AC} = \frac{CA}{CB} = \frac{DB}{AB}$	$\therefore (AC)^2 = DC \cdot CB$	
$\therefore \Delta DAB \sim \Delta DCA$		
$\therefore \frac{\mathrm{DA}}{\mathrm{DC}} = \frac{\mathrm{AB}}{\mathrm{CA}} = \frac{\mathrm{DB}}{\mathrm{DA}}$	$\therefore (AD)^2 = BD \cdot CD$	3 C D B
$\therefore \Delta DAB \sim \Delta ACB$		
$\therefore \frac{\mathrm{DA}}{\mathrm{AC}} = \frac{\mathrm{AB}}{\mathrm{CB}} = \frac{\mathrm{DB}}{\mathrm{AB}}$	$\therefore AD = \frac{AB \times AC}{BC}$	4

13

2021-2022

Example 6

 \overline{AH} and \overline{BC} are two intersecting chords at D in a circle, where D is the midpoint of \overline{BC} . Prove that: $(BD)^2 = AD \times DH$

If AB = 6 cm and BC = 9 cm. in \triangle ABC let point D be the midpoint of \overline{AB} and $H \in \overline{BC}$ such that BH = 2 cm.

Prove that: (1) \triangle **DBH** ~ \triangle **CBA**

(2) ADHC is a cyclic quadrilateral

Solution

In \triangle DBH and \triangle CBA: $\therefore \frac{BD}{BC} = \frac{3}{9} = \frac{1}{3} \qquad \because \frac{BH}{BA} = \frac{2}{6} = \frac{1}{3}$ $\therefore \frac{BD}{BC} = \frac{BH}{BA} \qquad \because \angle B \text{ is common angle}$ $\therefore \triangle \text{ DBH} \sim \triangle \text{ CBA} \qquad \longrightarrow (1)$ $\therefore \text{ m } (\angle \text{ BDH}) = \text{ m } (\angle \text{ BCA})$ $\therefore \text{ ADHC is a cyclic quadrilateral} \qquad \longrightarrow (2)$

14

www.Cryp2Day.com First Term | Geometry موقع مذكرات جاهزة للطباعة
First Secondary	Futures Language Schools A 2021-2022 Mathematical Department					
Example 3						
Δ ABC inscribed in circle, \overline{BD} is a tangent to the circle at B cut \overrightarrow{AC} at D.						
Show that: (1) \triangle DBA ~ \triangle DCB	(2) $(DB)^2 = (DA) (DC)$					
Soluti	0 n					
In \triangle DBA and \triangle DCB:	В					
\therefore BD is a tangent to the circle at B						
$\therefore m (\angle DAB) = m (\angle DBC) \qquad (on \ \widehat{BC})$	D C *A					
(the measure of the inscribed angle = the m	neasure of the tangency angle)					
$\therefore \angle D$ is a common angle						
$:: m (\angle DBA) = m (\angle DCB)$	$\therefore \Delta \text{ DBA} \sim \Delta \text{ DCB} \longrightarrow (1)$					
$\therefore \frac{\text{DB}}{\text{DC}} = \frac{\text{BA}}{\text{CB}} = \frac{\text{DA}}{\text{DB}}$	$\therefore (DB)^2 = (DA) (DC) \longrightarrow (2)$					
Example 9						
In the opposite figure:						
ABCD is a parallelogram.						
Prove that: Δ CDH ~ Δ OBC						
Soluti	on					
: ABCD is a parallelogram						
$\therefore \overrightarrow{OA} / / \overrightarrow{CD}$						
$\therefore \Delta \text{CDH} \sim \Delta \text{OAH} \longrightarrow \textcircled{1}$						
$: \overline{AH} / \overline{BC}$						
$\therefore \Delta \text{ OBC} \sim \Delta \text{ OAH} \longrightarrow \textcircled{2}$						
<i>From</i> ① & ②: $\therefore \Delta \text{ CDH} \sim \Delta \text{ OBC}$	[Discus another solution?!]					

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

15

EDUCATIONAL SYSTEMS

Futures Language Schools Mathematical Department 2021-2022

17

18

FUTURES EDUCATIONAL

Futures Language Schools

proportions: **A** $\frac{x}{z} = \frac{m}{\dots}$ **B** $\frac{x}{z} = \frac{l}{\dots}$ **C** $\frac{m}{l} = \frac{x}{\dots}$ $D = \frac{l}{l} = \frac{l}{l}$ **E** $\frac{x}{x} = \frac{y}{x}$ **F** $\frac{y}{y} = \frac{y}{z}$ **G** $\frac{l}{x} = \frac{z}{z}$ $H \frac{l}{r} = \frac{m}{v}$

(4) \overrightarrow{AB} and \overrightarrow{DC} are two chords in a circle, $\overrightarrow{AB} \cap \overrightarrow{DC} = \{E\}$, where E lies outside the circle, AB = 4cm, DC = 7cm and BE = 6cm. prove that $\triangle ADE \sim \triangle CBE$, then find the length of CE

(5) ABC, and DEF are two similar triangles, $\overrightarrow{AX} \perp \overrightarrow{BC}$ to intersect it at X, $\overrightarrow{DY} \perp \overrightarrow{EF}$ and intersects it at Y. Prove that $BX \times YF = CX \times YE$

(6) In \triangle ABC, AC > AB, M $\in \overline{AC}$ where m($\angle ABM$) = m ($\angle C$). Prove that $(AB)^2 = AM \times AC$.

7 ABC is a right angled triangle at A, $\overrightarrow{AD} \perp \overrightarrow{BC}$ to intersect it at D. if $\frac{BD}{DC} = \frac{1}{2}$, $AD = 6\sqrt{2}$ cm. Find the length of \overline{BD} , \overline{AB} and \overline{AC} .

(8) In the figure opposite: ABC is a right angled triangle at A, $\overline{AD} \perp \overline{BC}$, $\overline{DE} \perp \overline{AB}$, $\overline{DF} \perp \overline{AC}$. Prove that: E **A** \triangle ADE $\sim \triangle$ CDF **B** Area of rectangle AEDF = $\sqrt{AE \times EB \times AF \times FC}$

20

(10) The two sets A and B represent the side lengths of different triangles in centimetres. In front of each triangle from set A Write the triangle similar to it from set B

Set (A)

Set (B)

							Α	2.5	7	4	,	5
1	6	,	6	,	6		В	8	,	13,5	,	14
2	5	,	7	,	11		С	25	,	35	7	55
3	5	,	8	,	10		D	11	2	11	,	11
4	7	,	8	2	12		Е	3,5	7	4	,	6
5	16	,	27	,	28		F	8	7	6	,	10
							G	32	,	54	,	42

(11) In the figure opposite: A B C is a triangle in which AB = 6cm,

BC = 9cm and AC = 7.5cm.

D is a point outside the triangle ABC

where DB = 4cm and DE = 5cm. Prove that:

A \triangle ABC ~ \triangle DBA

B \overrightarrow{BA} bisects \angle DBC

(12) In the figure opposite , Complete:

 \triangle ABC ~ \triangle

and the scale factor =

21

First Term | Geometry

cm

2021-2022

Х

Example 2

 Δ XYZ in which $\frac{XY}{XZ} = \frac{9}{7}$ the circle passing through the vertices of this Δ is drawn. The tangent at X is drawn to cut \overrightarrow{YZ} at E. prove that: $\frac{A(\Delta XYZ)}{A(\Delta XYE)} = \frac{32}{81}$

Solution

E

 $: \overline{\text{EX}}$ is a tangent to the circle at X

 $:: m (\angle EYX) = m (\angle EXZ) \qquad (on \ \widehat{XZ})$

(the measure of the inscribed angle = the measure of the tangency angle)

- $\therefore \angle E$ is a common angle
- $\therefore \mathbf{m} \ (\angle \mathbf{EXY} \) = \mathbf{m} \ (\angle \mathbf{EZX})$
- $\therefore \Delta EXY \sim \Delta EZX$

$$\therefore \frac{A (\Delta EXY)}{A (\Delta EZX)} = \left(\frac{XY}{ZX}\right)^2 = \left(\frac{9}{7}\right)^2 = \frac{81}{49}$$
$$\therefore \frac{A (\Delta XYZ)}{A (\Delta EZX)} = \frac{81 - 49}{49} = \frac{32}{49}$$
$$\therefore \frac{A (\Delta XYZ)}{A (\Delta XYZ)} = \frac{32}{81}$$

24

Futures Language Schools Mathematical Department 2021-2022

Example 3

In the opposite figure:

 \overline{AB} and \overline{CD} are two non-interesting

chords in a circle.

If $\overline{AB} \cap \overline{CD} = \{E\}$ and AC = 3 BD.

Find: area of the quadrilateral ABDC area of triangle EAC

Solution

 \therefore AC = 3 BD

 $\therefore \frac{\text{AC}}{\text{DB}} = \frac{3}{1}$

: ABDC is a cyclic quadrilateral

 \therefore m (\angle EAC) = m (\angle EDB)

 \therefore m (\angle ECA) = m (\angle EBD)

 $\therefore \angle E$ is common angle

 $\therefore \frac{A (\Delta EAC)}{A (\Delta EDB)} = \left(\frac{AC}{DB}\right)^2 = \left(\frac{3}{1}\right)^2 = \frac{9}{1}$ $\therefore \frac{A (quad. ABDC)}{A (\Delta EDB)} = \frac{9-1}{1} = \frac{8}{1}$ $\therefore \frac{area of the quadrilateral ABDC}{area of triangle EAC} = \frac{8}{9}$

2021-2022

Example **4**

① The ratio between the lengths of two corresponding sides of two similar polygon is 1 : 2 what is the ratio between there areas and what is the ratio between their perimeters.

	Solution	
$\because \frac{\mathrm{L}_1}{\mathrm{L}_2} = \frac{1}{2}$	$\therefore \frac{A_1}{A_2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$	$\therefore \frac{P_1}{P_2} = \frac{L_1}{L_2} = \frac{1}{2}$

② The ratio between the areas of two similar polygon is 4 : 9 what is the ratio between their corresponding sides, what is the ratio between their perimeters.

Solution

 $\because \frac{A_1}{A_2} = \frac{4}{9} \qquad \qquad \therefore \frac{L_1}{L_2} = \sqrt{\frac{4}{9}} = \frac{2}{3} \qquad \qquad \therefore \frac{P_1}{P_2} = \frac{L_1}{L_2} = \frac{2}{3}$

③ The ratio between the perimeters of two similar polygons is 3:4 if the area of first polygon is 45 cm^2 , Find area of the second polygon.

Solution

 $\because \frac{P_1}{P_2} = \frac{3}{4} \qquad \qquad \therefore \frac{A_1}{A_2} = \left(\frac{3}{4}\right)^2 = \frac{9}{16} \qquad \therefore \frac{45}{P_2} = \frac{9}{16} \qquad \qquad \therefore P_2 = 80 \text{ cm}^2$

④ The ratio is between the lengths of two corresponding sides of two similar polygons is 2 : 3, if the sum of areas of the two a polygons equals 143 cm², Find the area of each.

Solution

ww.Cryp2Day.com موقع مذكرات ماهزة للطباع

$$\begin{array}{c}
\vdots \frac{L_{1}}{L_{2}} = \frac{2}{3} \\
\hline A_{1} & \vdots & A_{2} \\
4 & \vdots & 9 \\
\vdots & & \vdots & 143 \\
\end{array} \begin{array}{c}
\vdots \frac{A_{1}}{A_{2}} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9} \\
\vdots \frac{A_{1}}{A_{2}} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9} \\
\vdots \frac{A_{1}}{A_{2}} = \left(\frac{2}{3}\right)^{2} = \frac{4}{9} \\
\vdots A_{1} = 44 \text{ cm}^{2} \\
\hline A_{1} = 99 \text{ cm}^{2}
\end{array}$$

Futures Language Schools Mathematical Department

PRACTICE

Q1: Given the following figure,

find the area of a similar polygon

A'B'C'D' in which A'B' = 6.

Q2: Given the figure shown, determine the area of a similar polygon, *A'B'C'*

, in which A'B' = 3.

- D 64:81
- E 128:81

Q5: Two similar polygons have areas of 20 in² and 80 in². Find the scale factor of the first polygon to the second.

A 1:5
B 1:2
C 1:4
D 4:1
E 2:1

28

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department
Q6: Two corresponding sides of two similar polygons ha area of the smaller polygon is 324 cm ² , determine the are	ve lengths of 54 and 57 centimetres. Given that the ea of the bigger polygon.
Q7: <i>ABCD</i> is a square where <i>AB</i> , <i>BC</i> , <i>CD</i> , and <i>DA</i> are by the ratio of 4 : 1. Find the ratio of the area of <i>XYZL</i> A 3 : 5 B 25 : 17 C 489 : 593 D 17 : 25 E 593 : 489	divided by the points X, Y, Z , and L , respectively, to that of <i>ABCD</i> .
Q8: If $\triangle ABC \sim \triangle XYZ$ and $AB = \frac{9}{5}XY$, find (A) $\frac{36}{5}$ (B) $\frac{9}{5}$ (C) $\frac{18}{5}$ (D) $\frac{25}{81}$	area of XYZ area of ABC
Q9: Using the figure below, find the ratio between the antriangle ABC in its simplest form.A5 : 3B12 : 5C5 : 6Y12 0D22 : 15E2 : 1	trea of the parallelogram $XYZL$ and the area of the X L I C I I C I I C I I C I I G I I G I I G

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

29

First Secondary Futures Language Schools Mathematical Department

Q10: Triangle *ABC* is right angled at *A*, where AB = 20 and AC = 21. Suppose *L*, *M*, and *N* are similar polygons on corresponding sides \overline{AB} , \overline{BC} , and \overline{AC} . If the area of *L* is 145, what are the areas of *M* and *N* to the nearest hundredth?

A area of M = 159.86, area of N = 304.86

B area of M = 304.86, area of N = 159.86

C area of M = 210.25, area of N = 152.25

D area of M = 17.46, area of N = 12.64

Q10: Rectangle *QRST* is similar to rectangle *JKLM* with their sides having a ratio of 5 : 3. If the dimensions of each rectangle are tripled, find the ratio of the areas of the larger rectangles.

A 5:9
B 5:1
C 25:27
D 25:9

E 25:3

Q11: Rectangle QRST is similar to rectangle JKLM with their sides having a ratio of 9 : 5. If the dimensions of each rectangle are tripled, find the ratio of the areas of the larger rectangles.

A 3:5
B 27:5
C 27:25
D 81:25
E 243:25

Q12: Rectangle *QRST* is similar to rectangle *JKLM* with their sides having a ratio of 4 : 7. If the dimensions of each rectangle are doubled, find the ratio of the areas of the larger rectangles.

A 2:7	C 8:49	E 32:49
B 8:7	D 16:49	

First Term | Geometry

2021-2022

Futures Language Schools A 2021-2022 Mathematical Department

(5) ABC is an inscribed triangle in a circle where $\frac{AB}{BC} = \frac{4}{3}$. from the point B, a tangent is drawn to the circle and intersects \overrightarrow{AC} at E. prove that: $\frac{\text{area of } (\triangle \text{ ABC})}{\text{area of } (\triangle \text{ ABE})} = \frac{7}{16}$ **6** ABCD is a parallelogram, $X \in \overrightarrow{AB}$, $X \notin \overrightarrow{AB}$, where B X = 2 AB, $Y \in \overrightarrow{CB}$, $Y \notin \overrightarrow{CB}$, where BY = 2 BC. the parallelogram BXZY is drawn, prove that: $\frac{\text{area of (ABCD)}}{\text{area of (XBYZ)}} = \frac{1}{4}$ (7) A B C is a right angled triangle at B, $\overline{BD} \perp \overline{AC}$ and intersects it at D. The squares AXYB and BMNC are drawn on \overline{AB} and \overline{BC} respectively outside the triangle ABC: A Prove that polygon DAXY B = polygon DBMNC**B** If AB = 6cm and AC = 10cm, find the ratio between the areas of the two polygons. (8) A B C is a triangle, \overline{AB} , \overline{CB} and \overline{AC} are corresponding sides to three similar polygons X, Y, Z drawn outside the triangle respectively. If the area of polygon X equals 40 cm², area of polygon Y equals 85 cm² and area of polygon Z equals 125cm². Prove that: the triangle ABC is right angled. (9) ABCD is a square, \overline{AB} , \overline{BC} , \overline{CD} and \overline{DA} are divided in the ratio 1 : 3 by the points X, Y, Z and L respectively. Prove that: Area of the square XYZL A XYZL is a square B Area of the square ABCD First Term | Geometry 32

موقع مذكرات جاهزة للطباعة

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department				
2 <u>Complete:</u>	B				
(1) MA \times MB =	M ()				
<i>Solution:</i> $MA \times MB = MC \times MD$	M C D				
(2) $MA = 3 cm$, $AB = x cm$, $MC = 2 cm$	and CD = 6.5 cm, then <i>x</i> =				
Solution: \therefore MA \times MB = MC \times MD \therefore 9 + 3 x^2 = 18 \therefore 3 x^2 = 9	$\therefore 3 \times (3 + x) = 2 \times 8.5$ $\therefore x^2 = 3 \qquad \therefore x = \sqrt{3} \text{ cm}$				
(3) MA = x cm, AB = $2x$ cm, MC = 3 cm	n and CD = 6 cm, then <i>x</i> =				
Solution: \therefore MA × MB = MC × MD $\therefore x \times 3x = 27$ $\therefore 3x^2 = 27$	$\therefore x \times (x + 2x) = 3 \times 9$ $\therefore x^2 = 9 \qquad \therefore x = 3 \text{ cm}$				
(4) $MA = x cm, AB = 5 cm, MC = 3 cm$	and CD = 9 cm, then <i>x</i> =				
Solution: \therefore MA \times MB = MC \times MD $\therefore x^2 + 5x = 36$ $\therefore x^2 - 36$	$\therefore x \times (x + 5) = 3 \times 12$ $+ 5x - 36 = 0 \qquad \therefore x = 4 \text{ cm}$				
❸ <u>Complete:</u>	C				
(1) MA. MB = Solution: $MA \times MB = (MC)^2$	M				
(2) MC = x cm, MA = 4 cm and AB = 5	C cm, then $x = \dots$				
Solution: $:: MA \times MB = (MC)^2$	$\therefore 4 \times 9 = x^2$				
$\therefore x^2 = 36 \qquad \therefore x =$	$\sqrt{36}$ $\therefore x = 6 \text{ cm}$				
(3) MC = 8 cm, MA = x cm and AB = 12 cm, then x =					
Solution: \therefore MA \times MB = (MC) ² $\therefore x^2 + 12x = 64$ $\therefore x^2 - 64$	$\therefore x \times (x + 12) = 8^2$ + $12x - 64 = 0 \therefore x = 4 \text{ cm}$				
34 Josephicantenas	First Term Geometry				

Futures Language Schools Mathematical Department

Υ

2021-2022

Х

Example **2**

In the opposite figure:

A and B are the points of intersection of

two circles. A common tangent is drawn

touching them at X & Y.

If $\overrightarrow{AB} \cap \overrightarrow{XY} = \{C\}$ show that C is mid-point of \overrightarrow{XY} .

$\therefore \overrightarrow{CX}$ is a tangent at X	$\therefore (CX)^2 = CA \times CB$	(1)
$\therefore \overrightarrow{CY}$ is a tangent at Y	$\therefore (CY)^2 = CA \times CB$	(2)
From (1) and (2):	$\therefore (CX)^2 = (CY)^2$	
$\therefore CX = CY$	\therefore C is mid-point of \overline{XY}	

Solution

Example **3**

ABC is a triangle in which AB = 15 cm, AC = 12 cm. $D \in \overline{AB}$ where AD = 4cm, $E \in \overline{AC}$ where AE = 5cm.

موقع مذكرات جاهزة للطباعة

Example **4**

\triangle ABC in which AB = 8 cm, AC = 4 cm, D \in \overrightarrow{AC} , D \notin \overrightarrow{AC} where CD = 12 cm.

Prove that \overline{AB} touches the circle which passes through the points B, C, and D

Example **5**

A ladder of length 4 meters rests on a horizontal rough ground, and with the other end on a hemispheric tank, as in the figure opposite, If the lower end of the ladder is 2 meters far from the base of the tank.

Find the length of the radius of the sphere's tank.

Solution

$$\therefore (AB)^2 = AC \times AD$$
$$\therefore 4^2 = 2 \times AD$$

- $\therefore AD = 8 m$
- $\therefore \text{CD} = 8 2 = 6 \text{ m}$
- \therefore The length of the radius of the sphere's tank = 3 m

2021-2022

PRACTICE

Futures Language Schools

38

Futures Language Schools Mathematical Department

2021-2022

Q6: In the figure shown, the circle has a radius of 12 cm, AB = 12 cm, and AC = 35 cm. Determine the distance from \overline{BC} to the centre of the circle, M, and the length of \overline{AD} , rounding your answers to the nearest tenth. D 11.5 cm, 20.2 cm A 3.4 cm, 26.6 cm В M 19.6 cm, 20.2 cm C В C 3.4 cm, 20.5 cm D Q7: \overline{AB} and \overline{CD} are two chords of a circle intersecting at H. Find HD, where AH = 10, HB = 8, and CH = 16.2 Α 20 В 5 С 12.8 D Е 5.6 Q8: Find the value of x. D 8 3x2xE

39

2 In which of the following figures, the points A, B, C and D Lie on a circle? Explain your answer. (the lengths are measured in centimetres)

3 In which of the following figures, AB is a tangent to the circle passing through the points B, C and D.

4 Two circles are intersected at A and B. $C \in \overrightarrow{AB}$ and $C \notin \overrightarrow{AB}$, From C, The two tangent segments \overrightarrow{CX} and \overrightarrow{CY} are drawn to the circle at X and Y respectively. Prove that CX = CY.

41

Futures Language Schools Mathematical Department 2021-2022

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department
9 Two concentric circles at M, their radii circle to intersect the smaller circle at 2	i are 12cm, 7cm, \overline{AD} is a chord in the larger B and C respectively. Prove that $AB \times BD = 95$
(10) ABCD is a rectangle in which A B = 6 \overline{AC} at E and \overline{AD} at E	cm and B C = 8cm. $\overrightarrow{BE} \perp \overrightarrow{AC}$ and intersects
A Prove that $(AB)^2 = AF \times AD$.	
B Find the length of \overline{AF} .	

43

С

In opposite figure:

ABC is a triangle in which

 \overline{FD} // \overline{BC} and \overline{ED} // \overline{BF} , AE = 3 cm,

AD = 4 cm and DB = 2 cm

Find the length of: $\overline{\text{EF}}$ and $\overline{\text{FC}}$

Solution $\therefore \overline{ED} // \overline{BF} \qquad \qquad \therefore \frac{AD}{DB} = \frac{AE}{EF}$ $\therefore \frac{4}{2} = \frac{3}{EF} \qquad \qquad \therefore EF = \frac{3 \times 2}{4} = 1.5 \text{ cm}$ $\therefore \overline{FD} // \overline{BC} \qquad \qquad \therefore \frac{AD}{DB} = \frac{AF}{FC}$ $\therefore \frac{4}{2} = \frac{4.5}{FC} \qquad \qquad \therefore FC = \frac{4.5 \times 2}{4} = 2.25 \text{ cm}$

2 cm

В

2021-2022

Example 4

ABCD is a quadrilateral, $Y \in \overline{BD}$, \overline{YX} is drawn parallel to \overline{DA} to intersect \overline{AB} at X & \overline{YZ} is drawn parallel to \overline{DC} to intersect \overline{BC} at Z. Show that: $\overline{XZ} // \overline{AC}$

Solution					
In \triangle ABD:			٨		
$:: \overline{YX} // \overline{DA}$	$\therefore \frac{BX}{XA} = \frac{BY}{YD}$				
In \triangle BCD:					
$:: \overline{\mathrm{YZ}} // \overline{\mathrm{DC}}$	$\therefore \frac{\mathrm{BZ}}{\mathrm{ZC}} = \frac{\mathrm{BY}}{\mathrm{YD}}$	② ↓	Y X		
From 1 & 2:					
$\therefore \frac{BX}{XA} = \frac{BZ}{ZC}$	$\therefore \overline{\text{XZ}} // \overline{\text{AC}}$	С	Z B		
Example G					
ABCD is a trapezium in w	hich $\overline{\text{AD}}$ // $\overline{\text{BC}}$	and $\overline{AC} \cap \overline{BD}$ =	= { M }		
If AM = 2.5 cm , BD = $\frac{22}{3}$ c	m, MC = 3 ci	m and AD = 4.5	cm ,		
Then find the length of: M $\therefore \overline{AD} // \overline{BC}$	D , MB and B $Soluti\therefore \frac{MD}{BD} =$	$ \begin{array}{c} C\\ \hline On\\ \underline{AM}\\ \underline{AC}\\ \end{array} $	D M M		
$\therefore \frac{\text{MD}}{\frac{22}{3}} = \frac{2.5}{5.5}$	\therefore MD =	$\frac{1}{3} \times \frac{2.5}{5.5} = \frac{10}{3}$ cm	C Z B		
$\therefore BM = \frac{22}{3} - \frac{10}{3} = 4 cm$					
In \triangle ADM & \triangle CBM:					
$: \overline{\text{AD}} / \overline{\text{BC}}$	$\therefore \Delta ADN$	$\Lambda \sim \Delta CBM$			
$\therefore \frac{AD}{CB} = \frac{DM}{BM} = \frac{AM}{CM}$	$\therefore \frac{4.5}{CB} = \frac{2}{CB}$	<u>5</u> 3	\therefore CB = 5.4 cm		
47 FUTURES EDUCATIONAL SYSTEMS	www.Cry	o2Day.com	First Term Geometry		

موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

PRACTICE (1)

Futures Language Schools Mathematical Department

2021-2022

Talis Theorem

If two transversals cuts several parallel Lines, so the lengths of the corresponding segments on the two transversals are proportional.

If $L_1 // L_2 // L_3 // L_4$

And M₁, M₂ are two transversals

$$\therefore \ \frac{AB}{XY} = \ \frac{BC}{YZ} = \ \frac{CD}{ZH}$$

OR

$$\therefore \frac{AB}{XY} = \frac{AC}{XZ} = \frac{BD}{YH} = \dots$$

Example **1**

In the opposite figure: $\overline{AX} // \overline{BY} // \overline{CZ}$, OX = 6 cm, OA = 4 cm , BC = 5 cm and XZ = 15 cm Find the length of \overline{YZ} , \overline{AB}

First Term | Geometry

www.Cryp2Day.com

موقع مذكرات جاهزة للطباعة

$$\therefore \overline{AX} // \overline{BY} // \overline{CZ}$$

$$\therefore \frac{OX}{YZ} = \frac{OA}{BC}$$

$$\therefore \frac{6}{YZ} = \frac{4}{5}$$

$$\therefore YZ = \frac{6 \times 5}{4} = 7.5 \text{ cm}$$

$$\therefore XY = 15 - 7.5 = 7.5 \text{ cm}$$

$$\therefore \overline{AX} // \overline{BY} // \overline{CZ}$$

$$\therefore \frac{OA}{AB} = \frac{OX}{XY}$$

$$\therefore \frac{4}{AB} = \frac{6}{7.5}$$

$$\therefore AB = \frac{4 \times 7.5}{6} = 5 \text{ cm}$$
51

Example **3**

ABC is a triangle, D & H $\in \overline{AB}$ Let \overline{DX} and \overline{HY} be drawn parallel to \overline{BC} and intersect \overline{AC} at X & Y respectively. If $AD = \frac{1}{2}BH$, DH = 3AD & AC = 24 cm, then find the length of each of: \overline{AX} , \overline{XY} and \overline{YC}

Solution

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

In \triangle ABC:	
$\because \overline{\mathrm{DX}} / / \overline{\mathrm{HY}} / / \overline{\mathrm{BC}}$	
$\therefore \frac{AD}{AB} = \frac{AX}{AC}$	$\therefore \frac{1}{6} = \frac{AX}{24}$
$\therefore AX = \frac{24 \times 1}{6} = 4 \text{ cm}$	
$:: \frac{AD}{DH} = \frac{AX}{XY}$	$\therefore \frac{1}{3} = \frac{4}{XY}$
$\therefore XY = \frac{4 \times 3}{1} = 12 \text{ cm}$	
\therefore YC = 24 - (12 + 4) = 8 cm	n

52

Futures Language Schools Mathematical Department

54

Futures Language Schools Mathematical Department

ی D

2021-2022

6 cm

(4) In the figure opposite: $\overline{AB} // \overline{DE}$ and $\overline{AE} \cap \overline{BD} = \{C\}$ AC = 6cm, BC = 4cm and CD = 3cm.Find the length AE

(5) $\overline{XY} \cap \overline{ZL} = \{M\}$, where $\overline{XZ} // \overline{LY}$. If XM = 9cm, YM = 15cm and ZL = 36 cm, find the length of \overline{ZM} .

(6) For each of the following, use the figure opposite and the given data to find the value of \mathbf{x} (A) AD = 4, BD = 8, CE = 6 and AE = x. **B** AE = x, EC = 5 , AD = x - 2 and AD = 3. **C** AB = 21, BF = 8, FC = 6 and AD = x. D **D** AD = x, BF = x + 5 and 2DB = 3FC = 12. (7) In each of the following figures, Is $\overline{XY} // \overline{BC}$? В C C B (A) В Cm 63 cm EO 20

- (8) XYZ is a triangle in which XY= 14cm, XZ = 21cm and $L \in \overline{XY}$ where XL = 5,6cm and $M \in \overline{XZ}$ where XM = 8.4 cm. Prove that $\overline{LM} //\overline{YZ}$
- (9) In the triangle ABC, $D \in \overline{AB}$, $E \in \overline{AC}$ and 5AE = 4 EC.
 - If AD = 10 cm and DB = 8 cm. Is $\overline{DE} // \overline{BC}$? Explain your answer.

56

12 cm

18 cm

First Term | Geometry

9 cm V 15

- ABCD is a cyclic quadrilateral, its diagonals are intersected at E. If AE = 6cm, BE = 13cm, EF = 10cm and ED = 7.8 cm. prove that ABCD is a trapezium.
- (1) Prove that the line segment drawn between two mid points of two sides in a triangle is parallel to the third side and its length is equal to a half of this side.
- **12** ABC is a triangle, $D \in \overline{AB}$ where 3 AD = 2 DB and $E \in \overline{AC}$ where 5 C E = 3 A C and \overline{AX} is drawn to intersect \overline{BC} at X. If AF = 8cm and AX = 20cm where $F \in \overline{AX}$. Prove that the points D, F and E are collinear.
- **13** ABC is a triangle, $D \in \overline{BC}$, where $\frac{BD}{DC} = \frac{3}{4}$ and $E \in \overline{AD}$, where $\frac{AE}{AD} = \frac{3}{7}$. \overrightarrow{AE} is drawn to intersect \overrightarrow{AB} at X, \overrightarrow{DY} // \overrightarrow{CX} and intersects \overrightarrow{AB} at Y. Prove that AX = BY.
- 14 ABCD is a rectangle, its diagonals are intersected at M. E is the mid point of AM, F is the midpoint of MC. DE is drawn to intersect AB at X and DF is drawn to intersect BC at Y. Prove that: XY // AC.

(15) Write what each of the following ratios equals using the figure opposite:

A
$$\frac{AB}{BC} = \frac{DE}{\dots}$$
B $\frac{AC}{BC} = \frac{\dots}{EF}$ **C** $\frac{MA}{AB} = \frac{MD}{\dots}$ **D** $\frac{AC}{AB} = \frac{\dots}{DE}$ **E** $\frac{MB}{AB} = \frac{\dots}{DE}$ **F** $\frac{MC}{AC} = \frac{MF}{\dots}$ **G** $\frac{BC}{MB} = \frac{EF}{\dots}$ **H** $\frac{DF}{MF} = \frac{AC}{\dots}$

57

M

(16) In each of the following figures, calculate the numerical values of x and y (lengths are measured in centimetres)

Futures Language Schools A 2021-2022 Mathematical Department

A EY =
$$\frac{1}{2}$$
 AB.

58

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department
Example 1	
In the opposite figure:	A
$\overline{\text{AD}}$ bisects \angle BAC and	3 cm
\overline{AE} bisects exterior $\angle BAC$	E C D B
AB = 5 cm, AC = 3 cm, BD = 4	cm
Find the length of \overline{ED}	
	Solution
$\therefore \overrightarrow{AD}$ bisects $\angle BAC$	
$\therefore \frac{AB}{AC} = \frac{BD}{CD}$	$\therefore \frac{5}{3} = \frac{4}{\text{CD}}$
$\therefore \text{CD} = \frac{3 \times 4}{5} = 2.4 \text{ cm}$	
$\because \overrightarrow{AE} \text{ bisects exterior } \angle BAC$	
$\therefore \frac{AB}{AC} = \frac{BE}{CE}$	$\therefore \frac{5}{3} = \frac{BE}{CE}$
$\therefore \frac{5}{3} = \frac{CE + BC}{CE}$	
\therefore BC = 4 + 2.4 = 6.4 cm	$\therefore \frac{5}{3} = \frac{\text{CE} + 6.4}{\text{CE}}$
$\therefore 5 \text{ CE} = 3 (\text{CE} + 6.4)$	
$\therefore 5 \text{ CE} = 3 \text{ CE} + 19.2$:: 2 CE = 19.2
$\therefore CE = \frac{19.2}{2} = 9.6 cm$	
\therefore ED = 9.6 + 2.4 = 12 cm	
Well-known problem:	

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

If \overrightarrow{AD} bisects $\angle A$ in $\triangle ABC$ internally and intersects \overline{BC} at D

then: $AD = \sqrt{AB \times AC - BD \times DC}$

FUTURES EDUCATIONAL SYSTEMS

61

First Secondary	Futures Language Schools	2021-2022
Example 2		
ABC is a triangle in which AB = 27	cm, AC = 15 cm. \overrightarrow{AD} bised	$cts \angle \mathbf{A} \ and$
intersects \overline{BC} at D. If BD = 18 cm & CL) = 10. Calculate the length	n of AD .

Solution А $\therefore \overrightarrow{AD}$ bisects $\angle A$ 27 cm 15 cm $\therefore AD = \sqrt{AB \times AC - BD \times DC}$ $\therefore \text{ AD} = \sqrt{27 \times 15 - 18 \times 10}$ С 18 cm 10 cm D B \therefore AD = 15 cm

Example **3**

LMN is a triangle, k is mid-point of \overline{MN} , \overline{MX} bisects \angle LMN & cuts \overline{LK} at X. **Draw** \overrightarrow{XY} // \overrightarrow{MN} cuts \overrightarrow{LN} at Y. If Lk = LM prove that \overrightarrow{KY} bisect \angle LKN

Solution L In ΔLMK : $\therefore \overrightarrow{\text{MX}}$ bisects $\angle \text{LMN}$ $\therefore \frac{ML}{MK} = \frac{LX}{KX}$ (1)In Δ LMN: Μ $:: \overrightarrow{XY} // \overrightarrow{MN}$ $\therefore \frac{LX}{XK} = \frac{LY}{YN}$ 2 $\therefore \frac{ML}{MK} = \frac{LY}{YN}$ From 1 & 2: :: MK = KN& : LK = LM $\therefore \frac{LK}{KN} = \frac{LY}{YN}$ $\therefore \overrightarrow{\text{MX}}$ bisects $\angle \text{LMN}$ First Term | Geometry 62 www.Cryp2Day.com

موقع مذكرات جاهزة للطباعة

2021-2022

Example **4**

\overline{AD} is a median of $\triangle ABC$, $\angle ADB$ is bisected by a bisector meets \overline{AB} at X and $\overline{XY} // \overline{BC}$ meets \overline{AC} at Y. Prove that \overline{DY} bisects $\angle ADC$.

	Solution	
In \triangle ABD:		A M
$\because \overrightarrow{\text{DX}} \text{ bisects } \angle \text{ ADB}$	$\therefore \frac{\mathrm{DA}}{\mathrm{DB}} = \frac{\mathrm{AX}}{\mathrm{BX}}$	
In \triangle ABC:		Y X
$:: \overline{XY} / / \overline{BC}$	$\therefore \frac{AX}{BX} = \frac{AY}{CY}$	
From 1 & 2:	$\therefore \frac{\mathrm{DA}}{\mathrm{DB}} = \frac{\mathrm{AY}}{\mathrm{CY}}$	
$: \overline{AD}$ is a median of ΔABC	\therefore BD = CD	
$\therefore \frac{\mathrm{DA}}{\mathrm{DC}} = \frac{\mathrm{AY}}{\mathrm{CY}}$	$\therefore \overrightarrow{\text{DY}} \text{ bisects } \angle A$	ADC
Example G		
ABCD is a quadrilateral AB	= 6 cm. BC = 9 cr	m, CD = 6 cm, DA = 4 cm, \overrightarrow{AE}

ai ab = bisect $\angle A$ to cut \overline{BD} at E. (i) Find the ratio BE : ED (ii) Show that \overrightarrow{CE} bisect \angle BCD **Solution** In \triangle ABD: А 6 cm 4 cm $\therefore \overrightarrow{AE} \text{ bisects } \angle \text{ BAD} \qquad \therefore \frac{AB}{AD} = \frac{BE}{DE}$ в D Έ $\therefore \frac{\text{BE}}{\text{DE}} = \frac{6}{4} = \frac{3}{2}$ 6 cm 9 cm \therefore BE : ED = 3 : 2 **(i)** In \triangle BCD: $:: \frac{CB}{CD} = \frac{9}{6} = \frac{3}{2}$ $\therefore \frac{CB}{CD} = \frac{BE}{DE}$ $\therefore \overrightarrow{CE}$ bisects \angle BCD **(ii)** First Term | Geometry 63 www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

PRACTICE

موقع مذكرات جاهزة للطباعة

موقع مذكرات جاهزة للطباعة

(6) In each of the following figures, prove that $\overline{XY} //\overline{BC}$

(7) In each of the following figures, prove that \overrightarrow{BE} bisects $\angle ABC$.

8 In the figure opposite: $\overline{ED} // \overline{XY} // \overline{BC}$ and $AD \times BX = AC \times EX$. Prove that \overrightarrow{AY} bisects $\angle CAD$.

D R

Futures Language Schools Mathematical Department

9 ABC is a triangle, $D \in \overrightarrow{BC}$, $D \notin \overrightarrow{BC}$ where CD = AB. $\overrightarrow{CE} // \overrightarrow{DA}$ and intersects \overrightarrow{AB} at E. $\overrightarrow{EF} // \overrightarrow{BC}$ and intersects \overrightarrow{AC} at F. Prove that \overrightarrow{BF} bisects $\angle ABC$.

10 In the figure opposite: ABC is a triangle in which AB = 6cm, AC = 9cm and

B C = 10cm. D \in BC where BD = 4cm .

 $\overrightarrow{BE} \perp \overrightarrow{AD}$ and intersects \overrightarrow{AD} and \overrightarrow{AB} at E and F respectively.

A Prove that \overrightarrow{AD} bisects $\angle A$.

B Find area of (\triangle ABF) : area of (\triangle CBF)

2021-2022

68

2021-2022

Example **1**

Determine the position of each of the following points A, B and C w.r. to the circle M in which its radius equals 5cm, if:

 $P_M(A) = 11$, $P_M(B) = 0$, $P_M(C) = -16$, then calculate the distance between each point to the center of the circle.

Solution

$\therefore P_{M} (A) = 11 > 0 \qquad \therefore A \text{ lies outside the circle}$ $\therefore P_{M} (A) = (AM)^{2} - r^{2} \qquad \therefore 11 = (AM)^{2} - 25 \qquad \therefore AM = 6 \text{ cm}$ $\therefore P_{M} (B) = 0 \qquad \therefore B \text{ lies on the circle} \qquad \therefore BM = 5 \text{ cm}$ $\therefore P_{M} (C) = -16 \qquad \therefore C \text{ lies inside the circle}$ $\therefore P_{M} (C) = (CM)^{2} - r^{2} \qquad \therefore -16 = (CM)^{2} - 25 \qquad \therefore CM = 3 \text{ cm}$

Example **2**

The radius of circle M equals 31cm. The point A lies at 23cm distance from its radius center. Draw the chord \overline{BC} where A $\in \overline{BC}$, AB = 3 AC. Calculate:

(A) Length of the chord \overline{BC} and the center of the circle.

(B) The distance between the chord \overline{BC}

Solution

In the circle M: (A) \because r = 31cm, AM = 23cm, A $\in \overline{BC}$ \therefore A lies inside the circle, then $P_M(A) = (AM)^2 - r^2 = -AB \times AC$ $(23)^2 - (31)^2 = -3AC \times AC$ $\therefore AC = 12cm$ \therefore Length of the chord $\overline{BC} = 4 A C = 4 \times 12 = 48cm$ (B) let the distance between the chord and the centre of the circle be MD where $\overline{MD} \perp \overline{BC}$ $\because \overline{MD} \perp \overline{BC}$ \therefore D is midpoint of \overline{BC} , then BD = 24cm $\therefore (MD)^2 = (31)^2 - (24)^2 = 385$ $\therefore MD = \sqrt{385} \simeq 19.6cm$

> www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

PRACTICE (1)

Q1: A point is at a distance 40 from the centre of a circle. If its power with respect to the circle is 81, what is the radius of the circle, rounded to the nearest integer?

_	ř
Α	21

в 41

C 19

D 39

D

Q2: A circle with centre *M* and a mark *A* satisfy MA = 28 cm and $P_M(A) = 4$. Using $\pi = \frac{22}{7}$, find the area and the circumference of the circle to the nearest integer.

A Area = 88 cm^2 , circumference = 176 cm

B Area = 2451 cm^2 , circumference = 176 cm

C Area = 2451 cm^2 , circumference = 88 cm

Area = $4\,903\,\mathrm{cm}^2$, circumference = $88\,\mathrm{cm}$

Q3: A circle has center M and radius r = 21. Find the power of the point A with respect to the circle given that AM = 25.

Q4: A circle with centre N has a diameter equal to 38 cm. A point B satisfies NB = 7 cm. Find the power of B with respect to the circle, giving your answer to the nearest integer.

A	-1 395
B) -312
C	1 395

312

D

71

Q5: A circle with centre M has a radius of 8 cm. The power of a mark A with respect to the circle is 36. Decide whether A is outside, inside, or on the circle and then find the distance between A and M.

On the circle, 28 cm

B Inside the circle, 44 cm

C Outside the circle, 10 cm

First Secondary		Futures Language	Schools A 2021-2022
Application	ns of Propo	rtion in th	e
	Circle		3 - 3
 Determine the positive radius length 10cm, the circle. A P_M(A) = -36 	on of each of the follo then calculate the dist B P _M (B)	wing points with restance between each j	spect to the circle M, of point from the centre of $\mathbf{C} P_{M}(\mathbf{C}) = \text{zero}$
 2 Find the power of the A The point A whe B The point B whe C The point C whe D The point D whe 	e given point with resp ere AM = 12cm and r ere BM= 8 cm and r = ere CM= 7 cm and r = ere DM= $\sqrt{17}$ cm and	ect to the circle M w = 9cm = 15 cm = 7 cm r = 4 cm	hich its radius length is r:
3 If the distance betwee	en a point and the cent	re of a circle equals 2	25cm and the power of
 4 The radius length of a the circle, the chord of the chord BC. 	et to the circle equals 4 circle M equals 20cm, \overline{BC} is drawn where A	A is a point distant 1 $\in \overline{BC}$ and A B = 2 A	6cm from the centre of C. Calculate the length
75 FUTURES			First Term Geometry

www.Crup2Dau.com موقع مذكرات جاهزة للطباعة

حمّل التطبيق على موبايلك الأندرويد أو الأيفون موقع مذكرات جاهزة للطباعة - www.cryp2day.com

First Secondary

First Term

Student Name:

First Secondary Futures Lang Mathematica			utures Language Scho Aathematical Departmo	ant A 2021-2022
Example	e 0			
Determin	e the quadrant in	which each of t	he following ang	gles lies:
1 48°	2 17°	3 135°	● 295°	5 270°
		Solution		▲ 00°
1 48°	lies in 1 st qu	adrant	- nd	
2 217°	lies in 3 rd qu	uadrant	2 nd quadra 180°	nt 1°° quadrant 0°
8 135°	lies in 2 nd q	uadrant	3 rd quadra	360°
4 295°	lies in 4 th qu	uadrant	5 quadra	ant 4 quadrant
5 270°	lies in y-axi	S	2	270° ↓
Example	e 2	asure of the and	les whose measu	tres as follows.
Determin	e the negative mea	asure or the ang	ies whose measu	ires as follows.
1 32°	2 270°	8 56°	4 210°	5 315°
		Solution		
1 32°	The negative me	$asure = 32^{\circ} - 36$	$0^{\circ} = -328^{\circ}$	$[32^\circ \cong -328^\circ]$
2 270°	The negative me	asure = 270° – 3	$60^{\circ} = -90^{\circ}$	$[270^{\circ}\cong-90^{\circ}]$

- **3** 56° The negative measure = $56^{\circ} 360^{\circ} = -304^{\circ}$ [$56^{\circ} \cong -304^{\circ}$]
- **4** 210° The negative measure $= 210^\circ 360^\circ = -150^\circ$ [210° $\cong -150^\circ$]
- **5** 315° The negative measure = $315^\circ 360^\circ = -45^\circ$ [315° $\approx -45^\circ$]

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

First Sec	Futures Language Schools A 2021-202 Mathematical Department		tment A 2021-2022	
Exampl	e 3			
Determine the positive measure of each of the following angles:				
1 -46°	2 –246°	3 −186°	€ −300°	5 –97°
		Solution		
1 – 46°	The positive mea	$sure = -46^{\circ} + 3$	$60^{\circ} = 314^{\circ}$	$[-46^{\circ} \cong 314^{\circ}]$
2 –246°	The positive mea	sure = $-246^\circ + 3$	$360^{\circ} = 114^{\circ}$	$[-246^\circ \cong 114^\circ]$
3 –186°	The positive mea	$sure = -186^{\circ} + 3$	$360^{\circ} = 174^{\circ}$	$[-186^{\circ} \cong 174^{\circ}]$
4 –300°	The positive mea	$sure = -300^{\circ} + 3$	$360^{\circ}=60^{\circ}$	$[-300^{\circ} \cong 60^{\circ}]$
5 –97°	The positive mea	$sure = -97^{\circ} + 3$	$60^{\circ} = 263^{\circ}$	$[-97^\circ \cong 263^\circ]$
Example ④ Determine the quadrant in which each of the following angles lies: • 530° • 1652° • - 740°				
Determin 530° 	e the quadrant in	which each of t 9 1652°	he following a - 3	ngles lies: - 740°
Determin 530° 	e the quadrant in	which each of t 9 1652° <i>Solution</i>	he following a 3 –	ngles lies: - 740°
Determin 0 530° 1 530°	e the quadrant in	which each of t 9 1652° <i>Solution</i>	he following a 3 – © 530° equival	ngles lies: - 740° ent to 170°
Determin 0 530° 0 530° 170° lie	e the quadrant in	which each of t 2 1652° <i>Solution</i>	he following a 3 – * 530° equival * 530° lies in 2	ngles lies: - 740° ent to 170°
Determin ● 530° ○ 530° ○ 170° lie ● 1652°	e the quadrant in	which each of t 1652° Solution	he following a 3 – 530° equival 530° lies in 2 1652° equiva	ngles lies: - 740° ent to 170° and quadrant
Determin ● 530° ○ 530° ○ 170° lie ● 1652° ○ 212° lie	e the quadrant in s in 2 nd quadrant s in 3 rd quadrant	which each of t 9 1652° <i>Solution</i>	he following a 3 – 530° equival 530° lies in 2 1652° equival 1652° lies in	ngles lies: - 740° ent to 170° and quadrant elent to 212° 3 rd quadrant
Determin ● 530° • 170° lie ● 1652° • 212° lie ● - 740°	e the quadrant in s in 2 nd quadrant s in 3 rd quadrant	which each of t 9 1652° Solution	he following a 3 – 530° equival 530° lies in 2 1652° equiva 1652° lies in - 740° equiva	ngles lies: - 740° ent to 170° a nd quadrant alent to 212° 3 rd quadrant alent to 340°
Determin ● 530° • 170° lie ● 1652° • 212° lie ● - 740° • 340° lie	e the quadrant in s in 2 nd quadrant s in 3 rd quadrant s in 4 th quadrant	which each of t 9 1652° Solution	he following a 3 – 530° equival 530° lies in 2 1652° equiva 1652° lies in - 740° equiva - 740° lies in	ngles lies: - 740° ent to 170° and quadrant alent to 212° 3 rd quadrant alent to 340° a 4 th quadrant

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

3

First Term | Trigonometry

Futures Language Schools Mathematical Department

PRACTICE

Q1: Find the first negative angle which is coterminal with 190°.

Q2: Find an angle with a positive measure and an angle with a negative measure that are coterminal with an angle of 332°.

A 512°, −28°

B 602°, −28°

C 28°, −332°

D 692°, −28°

E 28°, -692°

Q3: Find one angle with positive measure and one angle with negative measure which are coterminal to an
angle with measure $\frac{2\pi}{3}$. Given that: $\pi = 180^{\circ}$
$\begin{bmatrix} A \end{bmatrix} \frac{8\pi}{3}, \frac{4\pi}{3}$
B $\frac{5\pi}{3}, -\frac{\pi}{3}$
C) $\frac{4\pi}{3}, -\frac{4\pi}{3}$
D $\frac{8\pi}{3}, -\frac{4\pi}{3}$
$\overline{F} = \frac{8\pi}{4\pi}$
<u> </u>
3,3
Q4: Given the angle $\frac{273\pi}{3}$, find the principal angle. Given that: $\pi = 180^{\circ}$
Q4: Given the angle $\frac{273\pi}{3}$, find the principal angle. Given that: $\pi = 180^{\circ}$
Q4: Given the angle $\frac{273\pi}{3}$, find the principal angle. Given that: $\pi = 180^{\circ}$ A 0 B $\frac{\pi}{3}$
Q4: Given the angle $\frac{273\pi}{3}$, find the principal angle. Given that: $\pi = 180^{\circ}$ A 0 B $\frac{\pi}{3}$ C 2π

موقع مذكرات جاهزة للطباعة

E

4

π

First Term | Trigonometry

First Secondary Fut	thematical Department 2021-2022
Q5: Given the angle $-\frac{23\pi}{5}$, find the principal angle. A $\frac{5\pi}{3}$ B $-\frac{3\pi}{5}$ C $\frac{7\pi}{5}$ D $\frac{3\pi}{5}$ E $\frac{5\pi}{7}$	Given that: $\pi = 180^{\circ}$
Q6: Find the smallest positive equivalent of 788°.	
Q7: Find the positive value of an angle coterminal with	25°.
Q8: Find one angle with positive measure and one angle with angle with measure $\frac{3\pi}{2}$. Given that: $\pi = 180^{\circ}$ A $\frac{7\pi}{2}, \frac{\pi}{2}$ B $\frac{5\pi}{2}, -\frac{\pi}{2}$ C $\frac{\pi}{2}, -\frac{\pi}{2}$ D $\frac{7\pi}{2}, -\frac{\pi}{2}$ E $-\frac{7\pi}{2}, \frac{\pi}{2}$	negative measure which are coterminal to an
Q9: Find the measure of $\angle \theta$.	
5 EUTURES <i>www.Cryp2Day.cr</i> تع مذكرات جاهزة للطباعة	om First Term Trigonometry

First Secondary	Futures Language Schools	2021-2022
 Q10: In which quadrant does the angle -242° lie? A third quadrant B fourth quadrant C first quadrant D second quadrant 		
 Q11: Which of the following angles is not equivalent A -695° B -335° C 205° D 385° 	t to an angle measuring 25° in stan	dard position?
 Q12: Find a positive and a negative coterminal a A 10° and -690° B 690° and 10° C 20° and -700° D 700° and -20° E 700° and -700° 	angle for 340°.	

6

First Term | Trigonometry

First Secondary			Futures Language Schools A 2021-2022 Mathematical Department		
4 Determine t A 24°	he quadrant in w B 215°	vhich each of th	ne following ang D -220°	les lies on: E 640)°
5 Show by drawing each of the following angles in the standard position:					
 6 Determine a negative measure for each of the following angles: A 83° B 136° C 90° 					
D 264°	E 9	64°	F 1070°		
 7 Determine the smallest positive measure of each of the following angles: A -183° B -217° C -315° D -570° 					
(8) In the figure opposite: which of the directed angles in the following ordered pairs is in the standard position? why? (A) $(\overrightarrow{OA}, \overrightarrow{OD})$ (B) $(\overrightarrow{OG}, \overrightarrow{OC})$ (C) $(\overrightarrow{AB}, \overrightarrow{AC})$ (D) $(\overrightarrow{OE}, \overrightarrow{OD})$ (E) $(\overrightarrow{OD}, \overrightarrow{OG})$ (F) $(\overrightarrow{OB}, \overrightarrow{OG})$					

First Term | Trigonometry

EDUCATIONAL SYSTEMS

2021-2022

Example **4**

Find the length of the arc in a circle with radius length r to nearest one decimal digit of cm. if it is opposite to a central angle with measure θ if: r = 20 cm., θ = 2.43^{rad}

Solution

 $\mathbf{r} = \mathbf{20} \ \mathbf{cm}.$, $\mathbf{\theta} = \mathbf{2}.\mathbf{43}^{rad}$

 $\ell = \theta^{rad} \times r = 2.43^{rad} \times 20 = 48.6$ cm

Example **5**

Geometry: the radius length of a circle equals 4 cm. The inscribed angle $\angle A B C$ of measure 30° is drawn in it. Find the length of the smaller arc \widehat{AC}

Solution

 $\therefore \theta^{\circ} = 60^{\circ}$ [measure of the central angle = 2 measure of the inscribed angle] $\theta^{rad} = 60^{\circ} \times \pi \div 180^{\circ} = \frac{1}{3}\pi \qquad r = \frac{\ell}{\theta^{rad}} = \frac{4}{\frac{1}{3}\pi} = \frac{12}{\pi} \text{ cm}$ $\therefore \text{ Circumference of the circle} = 2 \pi r = 2 \times \pi \times \frac{12}{\pi} = 24 \text{ cm}$

Example 6

Geometry: In the figure opposite: if the area of the right angled triangle M A B at M equals 32 cm², then find the perimeter of the coloured figure to the nearest hundredth.

\therefore Area of \triangle MAB = 32	Solution $\therefore \frac{1}{2}$ Base \times height	ht = 32
$\therefore \mathbf{AM} \times \mathbf{BM} = 64$	$\therefore r^2 = 64$	\therefore r = 8 cm
$\theta^{\mathrm{rad}} = 90^{\circ} \times \pi \div 180^{\circ} = \frac{1}{2}\pi$	$\therefore \boldsymbol{\ell}(\widehat{AB}) = \boldsymbol{\theta}^{rad} \times$	$r=\frac{1}{2}\pi\times 8=4\pi$ cm
∴ Perimeter of shaded part = 8	$+8+4\pi = 28.57$ cm	
11 FUTURES IEDUCATIONAL SYSTEMS	www.Cryp2Day.com	t Term Trigonometry
	موقع مذكرات جاهزة للطباعة	

Futures Language Schools Mathematical Department

PRACTICE (1)

Q1: Convert $\frac{\pi}{3}$ to degrees.

Q2: Convert 0.5 rad to degrees giving the answer to the nearest second.

A 90°

B 0°9'33''

C 0°31″

D 28°38′52″

57°17'45''

Q3: Convert -3.3 rad to degrees giving the answer to the nearest second.

A 126°

Ε

B 170°55′26″

C 359°56'33''

D 358°56′58′′

E 341°50′52″

Q4: A gymnast circles a pommel horse by an angle of 50°. Find the angle in radians giving the answer to one decimal place.

Q5: Find the values of two angles in degrees given their sum is 74° and their difference is	$\frac{1}{5}$. Give the
answer to the nearest degree.	

A 52°, 22°

B 62°, 22°

c 62°, 12°

D 62°, 32°

12

Q6: Find the values of two angles in radians given their sum is 74° and their difference is $\frac{2\pi}{9}$. Give the answer to two decimal places.
A 0.3 rad, 1.17 rad
B 0.47 rad, 0.99 rad
C 0.3 rad, 0.99 rad D 0.47 rad, 1.17 rad
Q7: Convert 142°46′48′′ to radians giving the answer to three decimal places.
O8: The shadow of a sundial changes at a rate of 15° every hour. Find the angle of the shadow's position
5 hours after sunrise giving the answer in radians to three decimal places
Stand Bring and and and an and a domain process
On Convert 260° to rediance giving the engineer in terms of -
Q9: Convert 560° to radians giving the answer in terms of π .
\boxed{A} $\frac{360}{}$
\mathbb{B} $\frac{\pi}{2}$
<u>C</u> π
D 2π
Ε 360π
Q10: What is the equivalent measure of 360° in radians?
A 2π
$\begin{bmatrix} B \end{bmatrix} \frac{\pi}{2}$
C <i>π</i>
D 3π
E 4π

13

First Secondary

Futures Language Schools Mathematical Department

PRACTICE (2)

Q1: Find the length of the blue arc given the radius of the circle is 8 cm.	
Give the answer to one decimal place. $ \frac{4\pi}{3} $	
Q2: An arc has a measure of $\frac{2\pi}{3}$ radians and a radius of 9. Work out the length of the arc, giving ye	our
answer in terms of π , in its simplest form.	
A 9π	
B 3π	
C 2π	
D 18π	
$E 6\pi$	
Q3: An arc has a measure of $\frac{\pi}{8}$ radians and a radius of 6. Work out the length of the arc, giving you	ır
answer in terms of π , in its simplest form.	
$\begin{bmatrix} A \end{bmatrix} \frac{3\pi}{8}$	
$\boxed{B} \frac{3\pi}{2}$	
C $\frac{3\pi}{4}$	
D $\frac{4\pi}{3}$	
$E \frac{2\pi}{3}$	

14

First Secondary		Futures Language Schools A 2021-2022 Mathematical Department	
Degree measure and radian			
4 - 2	- 2 measure of an angle		
First: Multiple choice	e:		
1 The angle of meas	sure 60° in the standard	d position is equiva	lent to the angle of measure:
A 120°	B 240°	C 300°	D 420°
2 The angle of meas	sure $\frac{31\pi}{6}$ lies in the		quadrant
A First	B second	c third	D fourth
3 The angle of meas	sure $\frac{-9\pi}{4}$ lies in the		quadrant
A First	B second	C third	D fourth
4 If the sum of mea	asures of the interior a	angles of a regular	polygon equals 180° (n – 2)
radian measure eq	uals:	ne measure of the a	angle of a regular pentagon in
A $\frac{\pi}{3}$	$\boxed{\textbf{B}} \frac{7\pi}{2}$	$c \frac{3\pi}{5}$	$D \frac{2\pi}{3}$
5 The angle of meas	sure $\frac{7\pi}{3}$ its degree me	easure equals	
A 105°	B 210°	C 420°	D 840°
6 If the degree meas	sure of an angle is 64°	48' , then its radian	measure equals
A 0.18 ^{rad}	B 0.36 ^{rad}	C 0.18 π	Ο 0.36 π
$\overline{7}$ The arc length in	a circle of diameter	length 24 cm and c	opposite to a central angle of
	B 3π cm	\bigcirc 4 π cm	D 5 <i>π</i> cm
8 The measure of th	e central angle in a cir	cle of radius length	15 cm and opposite to an arc
length 5πcm equ	als		
A 30°	B 60°	C 90°	D 180°
15 EUTURE		ryp2Day.com	First Term Trigonometry

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department A		
(9) If the measure of an angle of a equals $\frac{\pi}{4}$, then the radian measure $\mathbf{A} = \frac{\pi}{6}$ (B) $\frac{\pi}{4}$	triangle equals 75° sure of the third angle of $\frac{\pi}{3}$	and the measure of equals. $D \frac{5\pi}{12}$	another angle
Second: Answer the following quantum formula π , find the radian π , find the radian π , formula π , for	neasure of the followi B 240° D 300° F 780° following angles appr	ng angles	to the peerest
three decimal places:	following angles appr	oximating the result	to the heatest
A 56.6°	B 25° 18'	C 160°	50' 48"
 Find the dgree measure of the second: A 0.49^{rad} 	following angles appr B 2.27 ^{rad}	oximating the result $\mathbf{C} - 3\frac{1}{2}^{\text{rac}}$	to the nearest
 13 θ is a central angle in a circle o A If r = 20 cm and θ = 78° 1 B If L = 27.3 cm and θ = 78° 14 A central angle of measure 150° a (to the nearest tenth). 	f radius r and subtends 5' 20" then find L. 0' 24" then find <i>r</i> . and subtends an arc leng	s an arc of length L : (to the (to the) (to the) gth 11cm. Calculate its	nearest tenth) nearest tenth) s radius length
15 Find the radian and degree meas in a circle of radius length 4cm	ure of the central angle	which subtends an ar	c length 8.7cm
16 FUTURES IEDUCATIONAL SY STEMS	www.Cryp2Day.com موقع مذكرات ماهزة للطاعة	First Term T	rigonometry

(16) Geometry: the measure of an angle of a triangle is 60° and the measure of another angle is $\frac{\pi}{4}$. Find the radin measure and the degree measure of the third angle.

- **(17) Geometry:** the radius length of a circle equals 4 cm. The inscribed angle $\angle A B C$ of measure 30° is drawn in it. Find the length of the smaller arc \widehat{AC}
- (18) Geometry: In the figure opposite: if the area of the right angled triangle M A B at M equals 32 cm², then find the perimeter of the coloured figure to the nearest hundredth.

2021-2022

- (19) Geometry: the diameter length in a circle equals 24cm and the chord \overline{AC} is drawn such that m ($\angle BAC$)= 50°. Find the length of the smaller arc \widehat{AC} approximating the result to the nearest hundredth.
- **20 Distances:** What is the distance covered by the point on the end of the minute hand in 10 minutes, if the hand length is 6cm?
- (21) Astronomy: A satellite revolves around the Earth in a circular path way a full revolution every 6 hours. If the radius length of its path way equals 9000km, then find its speed in km/h

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department
The signs of the trigonometric functions	he c $T/2 = 90^{\circ}$ 2nd quadrant $T = 180^{\circ}$ $T = 180^{\circ}$ Tan Cos Cot C
Example ODetermine the signs of the	e following trigonometric functions:
1 tan 320° 2 sin 160°	° 3 sec 750° 4 csc $\frac{4\pi}{5}$ 5 cos (-200°)
	Solution
1 tan 320°	∴ 320° lies in 4 th quadrant
∴ tan 320° is negative	
2 sin 160°	: 160° lies in 2 nd quadrant
∴ sin 160° is positive	
3 sec 750°	$: 750^{\circ} = 30^{\circ}$ lies in 1 st quadrant
∴ sec 750° is positive	
$4 \csc \frac{4 \pi}{5}$	$: \frac{4\pi}{5} = \frac{4\pi}{5} \times 180^\circ \div \pi = 144^\circ \text{ lies in } 2^{\text{nd}} \text{ quadrant}$
$\therefore \csc \frac{4\pi}{5}$ is positive	
5 cos (-200°)	$\therefore -200^{\circ} = -200^{\circ} + 360^{\circ} = 160^{\circ} \text{ lies in } 2^{\text{nd}} \text{ quadrant}$
$\therefore \cos(-200^\circ)$ is negative	
19 EDUCATIONAL SYSTEMS	www.Cryp2Day.com First Term Trigonometry موقع مذكرات جاهزة للطباعة

2021-2022

Example **2**

If θ is the measure of a directed angle in its standard position, B is the point of the intersection of its terminal side with the unit circle, find all trigonometric functions of θ in each of the following cases:

$\bigcirc \left(-\frac{3}{5},\frac{4}{5}\right)$	$2\left(\frac{5}{13},\frac{12}{13}\right)$	(0.6, y), y > 0	
	Solution		
$\bigcirc \left(-\frac{3}{5},\frac{4}{5}\right)$	$\therefore x$ is –ve & y is +ve	$\therefore \left(-\frac{3}{5}, \frac{4}{5}\right)$ lies in 2 nd quadrant	
$\sin \theta = \frac{4}{5}$	$\cos \theta = -\frac{3}{5}$	Tan $\theta = -\frac{4}{3}$	
$\operatorname{Csc}\boldsymbol{\theta}=\frac{5}{4}$	Sec $\theta = -\frac{5}{3}$	$\cot \theta = -\frac{3}{4}$	
$2\left(\frac{5}{13},\frac{12}{13}\right)$	$\therefore x$ is +ve & y is +ve	$\therefore \left(\frac{5}{13}, \frac{12}{13}\right) \text{ lies in } 1^{\text{st}} \text{ quadrant}$	
$\sin \theta = \frac{12}{13}$	$\cos \theta = \frac{5}{13}$	$\operatorname{Tan} \theta = \frac{12}{5}$	
$\mathbf{Csc} \mathbf{\theta} = \frac{13}{12}$	$\operatorname{Sec} \theta = \frac{13}{5}$	$\cot \theta = \frac{5}{12}$	
(0.6, y), y > 0	$\therefore x^2 + y^2 = 1$	$\therefore (0.6)^2 + y^2 = 1$	
$\therefore y^2 = 1 - 0.36$	$\therefore y^2 = 0.64$	$\therefore y = \pm \sqrt{0.64} = 0.8 (y > 0)$	
$\therefore \left(\frac{3}{5}, \frac{4}{5}\right)$	$\therefore x$ is +ve & y is +ve	$\therefore \left(\frac{3}{5}, \frac{4}{5}\right)$ lies in 1 st quadrant	
$\sin\theta = \frac{4}{5}$	$\cos \theta = \frac{3}{5}$	$\operatorname{Tan} \theta = \frac{4}{3}$	
$\operatorname{Csc} \Theta = \frac{5}{4}$	$\operatorname{Sec} \theta = \frac{5}{3}$	$\cot \theta = \frac{3}{4}$	

FUTURES EDUCATIONAL SYSTEMS

Example **3**

If $\theta \in \left] \frac{3\pi}{2} \right|$, $2\pi \left[\text{ and } \cos \theta = \frac{5}{13} \right]$, find all trigonometric functions of θ

- Solution $\therefore \cos \theta = \frac{5}{13}$ $\therefore x = \frac{5}{13}$ $\therefore x^2 + y^2 = 1$ $\therefore \left(\frac{5}{13}\right)^2 + y^2 = 1$ $\therefore y^2 = 1 - \frac{25}{169}$ $\therefore y^2 = \frac{144}{169}$
- (13) $y = \pm \sqrt{\frac{144}{169}} = -\frac{12}{13}$ $\theta \in \left[\frac{3\pi}{2}, 2\pi\right]$

Special Angles

θ	Sin <i>θ</i>	Cos <i>θ</i>	Tan θ
0° or 360°	0	1	0
$90^{\circ} = \frac{\pi}{2}$	1	0	undefined
$180^\circ = \pi$	0	-1	0
$270^{\circ} = \frac{3\pi}{2}$	-1	0	undefined
$30^{\circ} = \frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$60^{\circ} = \frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$45^{\circ} = \frac{\pi}{4}$	$\frac{\overline{1}}{\sqrt{2}}$	1	1

Example **4**

Find the value of:

موقع مذكرات ماهزة للطباعة

2021-2022

Futures Language Schools Mathematical Department 2021-2022

First Term | Trigonometry

موقع مذكرات جاهزة للطباعة

Futures Language Schools A Mathematical Department

2021-2022

Q3: Find sec θ , given θ is in standard position and its terminal side passes through the point $\left(\frac{4}{5}, \frac{3}{5}\right)$.
$\begin{bmatrix} A \end{bmatrix} \frac{5}{3}$
\mathbb{B} $\frac{5}{4}$
C $\frac{4}{5}$
$\boxed{D} \frac{3}{5}$

PRACTICE (2)

Q1: The terminal side of θ in standard position intersects with the unit circle at the point <i>B</i> with coordinates $\left(\frac{8}{17}, \frac{15}{17}\right)$. Find sec θ .
$\begin{bmatrix} A \end{bmatrix} \frac{17}{8}$
$\begin{bmatrix} B \end{bmatrix} -\frac{17}{8}$ $\begin{bmatrix} C \end{bmatrix} \frac{17}{15}$
$ \begin{array}{c} \begin{array}{c} 13 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} $
Q2: The terminal side of $\angle AOB$ in standard position intersects with the unit circle at the point <i>B</i> with coordinates $(-x, -x)$ where <i>x</i> is a postive number. Find $\sin \theta$.

FUTURES

23

First Secondary	Futures Language Schools	2021-2022
PRACTICE (3)		
Q1: Determine the quadrant in which θ lies if $\cos \theta$	$\theta < 0$ and $\sin \theta < 0$.	
A the third quadrant		
B the second quadrant		
C the fourth quadrant		
Q2: Determine the quadrant in which θ lies if $\cos \theta$	$\theta > 0$ and $\sin \theta < 0$.	
A the first quadrant		
B the second quadrant		
C the third quadrant		
D the fourth quadrant		
Q3: The angle θ is in standard position where sec $\theta < 0$. In which quadrants does the termin	nal side of θ lie?
A first or third		
B second or third		
C first or fourth		
D second or fourth		
Q4: Determine the quadrant in which θ lies if co	$s\theta < 0$ and $\sin\theta > 0$.	
A the first quadrant		
B the fourth quadrant		
C the second quadrant		
D the third quadrant		

24

Futures Language Schools **First Secondary** 2021-2022 Mathematical Department Second: Answer the following questions: (9) Find all trigonometric functions of angle θ drawn in the standard position and its terminal side intersects the unit circle and passes through each of the following points. **B** $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ **C** $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ **A** $(\frac{2}{3}, \frac{\sqrt{5}}{3})$ **D** $(-\frac{3}{5}, -\frac{4}{5})$ (10) If θ is the measure of the directed angle in the standard position and its terminal side intersects the unit circle at the given point, find all trigonometric function of the angle θ in each of the following cases : (A) (3 a, -4a)where a > 0**B** $(\frac{3}{2}a, -2a)$ where $\frac{3\pi}{2} < \theta < 2\pi$ (11) Determine the sign of each of the following trigonometric function: **B**) tan 365° (\mathbf{A}) sin 240° (\mathbf{C}) csc 410° **F** tan $\frac{-20\pi}{9}$ $\bigcirc \cot \frac{9\pi}{4}$ E sec - $\frac{9\pi}{4}$ (12) Find the value of each of the following: **A** $\cos \frac{\pi}{2} \times \cos 0 + \sin \frac{3\pi}{2} \times \sin \frac{\pi}{2}$ **B** $\tan^2 30^\circ + 2 \sin^2 45^\circ + \cos^2 90^\circ$

موقع مذكرات ماهزة للطباعة

26

First S	Secondary	Futures Language Schools A 2021-2 Mathematical Department	022
Les	sson (4)	Related Angles	
Les	sson objectives	Related Links	
 Classify the relation between trigonometric functions of angles (θ, θ ± 90°), (θ, θ ± 180°) and (θ, θ ± 270°). Find the general solution of trigonometric equations in the form: sin x = cos y, csc x = sec y and tan x = cot y 			
Reme	<u>mber that:</u>		
	$\sin (90^{\circ} - \theta) = \cos \theta$ $\cos (90^{\circ} - \theta) = \sin \theta$ $\tan (90^{\circ} - \theta) = \cot \theta$ $\sin (-\theta) = -\sin \theta$ $\cos (-\theta) = \cos \theta$ $\tan (-\theta) = -\sin \theta$	$csc(90^{\circ} - \theta) = sec \theta$ $sec(90^{\circ} - \theta) = csc \theta$ $cot (90^{\circ} - \theta) = tan \theta$ $csc (-\theta) = -csc \theta$ $sec (-\theta) = sec \theta$	
	$\sin (360^\circ - \theta) = -\sin \theta$ $\cos (360^\circ - \theta) = \cos \theta$ $\tan (360^\circ - \theta) = -\tan \theta$	$cot (-\theta) = -cot \theta$ $csc (360^{\circ} - \theta) = -csc \theta$ $sec (360^{\circ} - \theta) = sec \theta$ $cot (360^{\circ} - \theta) = -cot \theta$	
	$\sin (90^{\circ} + \theta) = \cos \theta$ $\cos (90^{\circ} + \theta) = -\sin \theta$ $\tan (90^{\circ} + \theta) = -\cot \theta$	$\csc (90^{\circ} + \theta) = \sec \theta$ $\sec (90^{\circ} + \theta) = -\csc \theta$ $\cot (90^{\circ} + \theta) = -\tan \theta$	
	$\sin (180^{\circ} - \theta) = \sin \theta$ $\cos (180^{\circ} - \theta) = -\cos \theta$ $\tan (180^{\circ} - \theta) = -\tan \theta$	$\csc (180^{\circ} - \theta) = \csc \theta$ $\sec (180^{\circ} - \theta) = -\sec \theta$ $\cot (180^{\circ} - \theta) = -\cot \theta$	
	$sin (180 + \theta) = -sin \theta$ $cos (180 + \theta) = -cos \theta$ $tan (180 + \theta) = tan \theta$	$\csc (180 + \theta) = -\csc \theta$ $\sec (180 + \theta) = -\sec \theta$ $\cot (180 + \theta) = \cot \theta$	
	$\sin (270 - \theta) = -\cos \theta$ $\cos (270 - \theta) = -\sin \theta$ $\tan (270 - \theta) = \cot \theta$	$\csc (270 - \theta) = -\sec \theta$ $\sec (270 - \theta) = -\csc \theta$ $\cot (270 - \theta) = \tan \theta$	
	$sin (270 + \theta) = -cos \theta$ $cos (270 + \theta) = sin \theta$ $tan (270 + \theta) = -cot \theta$	$\csc (270 + \theta) = -\sec \theta$ $\sec (270 + \theta) = \csc \theta$ $\cot (270 + \theta) = -\tan \theta$	

First Term | Trigonometry

FUTURES EDUCATIONAL S Y S Y E M S

Futures Language Schools Mathematical Department

2021-2022

Example **2**

If $\cos c = -\frac{4}{5}$ where $c \in [90^\circ, 180^\circ[$, find the value of each of the following: $1 \sin(180^{\circ} - c)$ **2** sec $(360^{\circ} - c)$ $x \rightarrow \cos$ Θ cos (-c) $4 \tan(c - 180^{\circ})$ $y \rightarrow \sin$ **5** $\cos (180^{\circ} + c) - \cot (270^{\circ} + c)$ Solution $x^{2} + v^{2} = 1$ $\therefore \left(\frac{-4}{r}\right)^2 + y^2 = 1$ $\therefore y^2 = 1 - \frac{16}{25} = \frac{9}{25}$ $\therefore y = \pm \sqrt{\frac{9}{25}} = \pm \frac{3}{5}$ ∵ c ∈]90° , 180°[\therefore c lies in 2nd quadrant $\therefore y = \frac{3}{r}$ $\therefore \sin c = \frac{3}{r}$ $\cos C = -\frac{4}{5}$ Sin C = $\frac{3}{r}$ Tan C = $\frac{4}{3}$ $\operatorname{Csc} \operatorname{C} = \frac{5}{2}$ Sec C = $-\frac{5}{4}$ Cot C = $\frac{3}{4}$ **1** $\sin(180^\circ - c) = \sin c = \frac{3}{5}$ **2** sec $(360^{\circ} - c) = \sec c = -\frac{5}{4}$ **3** cos (-c) = cos c = $-\frac{4}{r}$ 4 tan (c - 180°) = tan (c - 180° + 360°) = sin (180° + c) = $-\sin c = -\frac{3}{r}$ **5** $\cos(180^{\circ} + c) - \cot(270^{\circ} + c) = -\cos c - (-\tan c) = -\left(-\frac{4}{5}\right) + \frac{4}{3} = \frac{32}{15}$

موقع مذكرات جاهزة للطباعة

29

First Seconda	ry
---------------	----

Futures Language Schools Mathematical Department 2021-2022

Remarks

- If sin $x = \cos$, then $x \pm y = 90^{\circ} + 360^{\circ}$ n
- If $\csc x = \sec$, then $x \pm y = 90^{\circ} + 360^{\circ}$ n
- If $\tan x = \cot$, then $x + y = 90^{\circ} + 180^{\circ}$ n

• If x & y are complementary (sum = 90°), then: sin $x = \cos x$, tan $x = \cot y$ and csc $x = \sec y$

Example 3

If sin $(3 x + 28^{\circ}) = \cos (2 x - 13^{\circ})$, find the values of x where $0^{\circ} < x < 90^{\circ}$

Solution

 $: \sin (3x + 28^\circ) = \cos (2x - 13^\circ)$

 $\therefore (3 x + 28^{\circ}) \pm (2 x - 13^{\circ}) = 90^{\circ} + 360^{\circ} n$

$\therefore (3 x + 28^{\circ}) + (2 x - 13^{\circ}) = 90^{\circ} + 360^{\circ} n$ $\therefore 3x + 28^{\circ} + 2x - 13^{\circ} = 90^{\circ} + 360^{\circ} n$ $\therefore 5x + 15^{\circ} = 90^{\circ} + 360^{\circ} n$	$\therefore (3 x + 28^{\circ}) - (2 x - 13^{\circ}) = 90^{\circ} + 360^{\circ} n$ $\therefore 3x + 28^{\circ} - 2x + 13^{\circ} = 90^{\circ} + 360^{\circ} n$ $\therefore x + 41^{\circ} = 90^{\circ} + 360^{\circ} n$
At n = 0	$\mathbf{At} \mathbf{n} = 0$
$\therefore 5x + 15^\circ = 90^\circ$	$\therefore x + 41^\circ = 90^\circ$
$\therefore 5x = 90^\circ - 15^\circ = 75^\circ$	$\therefore x = 90^{\circ} - 41^{\circ}$
$\therefore x = 15^{\circ} < 90^{\circ} \qquad \checkmark$	$\therefore x = 49^{\circ} < 90^{\circ} \qquad $
$\mathbf{At} \mathbf{n} = 1$	$\mathbf{At} \mathbf{n} = 1$
$\therefore 5x + 15^\circ = 90^\circ + 360^\circ$	$\therefore x + 41^\circ = 90^\circ + 360^\circ$
$\therefore 5x = 450^{\circ} - 15^{\circ} = 435^{\circ}$	$\therefore x = 450^{\circ} - 41^{\circ}$
$\therefore r - 87^{\circ} < 90^{\circ} \qquad $	$\therefore x = 409^{\circ} > 90^{\circ} \qquad \times$

: The values of x are: 15°, 49° & 87°

30

First Secondary		Futures Language Schools	2021-2022
Example 4			
If $c \in] 0^\circ$, $\frac{\pi}{2}$ [and if tan (2)	$2\mathbf{c} + 15^\circ) = \mathbf{co}$	t $(3c - 5^{\circ})$, find the values o	of c
	Solu	tion	
$\therefore \tan (2c + 15^{\circ}) = \cot (3c - 15^{\circ})$	5°)	$\therefore (2c + 15^{\circ}) + (3c - 5^{\circ}) = 90$	° + 180° n
$\therefore 2c + 15^{\circ} + 3c - 5^{\circ} = 90^{\circ} - 5^{\circ}$	+ 180° n	$\therefore 5c + 10^{\circ} = 90^{\circ} + 180^{\circ} n$	
$\mathbf{At} \mathbf{n} = 0$			
$:.5c + 10^{\circ} = 90^{\circ}$	$\therefore 5c = 80^{\circ}$	$\therefore c = 16^{\circ} < 9$	0° √
At n = 1			
$\therefore 5c + 10^{\circ} = 90^{\circ} + 180^{\circ}$	$\therefore 5c = 260^{\circ}$	$\therefore c = 52^{\circ} < 9$	0° √
At n = 2			
$\therefore 5c + 10^{\circ} = 90^{\circ} + 360^{\circ}$	$\therefore 5c = 440^{\circ}$	$\therefore c = 88^{\circ} < 9$	0° √
∴ The values of c are:16°,	52° & 88°		
Example (5) If $\cos \theta = \frac{1}{2}$ where $\theta \in [0^{\circ}, 360^{\circ}]$, find the possible values of θ <i>Solution</i>			
$\therefore \cos \theta = \frac{1}{2}$		π/2 = 90 [°]	
$\therefore \theta$ lies in the 1 st or 4 th quadrant Let $\cos x = \frac{1}{2}$		180 - θ θ	lt
		Sin All	drant 0
$\therefore x = 60^{\circ}$		$\Pi = 180^{\circ} \underbrace{(25c)}_{\text{Tan}} \xrightarrow{\text{Cos}} (4th \text{ quadrant}) \xrightarrow{\text{Cos}} (7th \text{ sec}) \xrightarrow{\text{Cos}} (7th \text{ quadrant}) \xrightarrow{\text{Cos}} (7th $	D, 360 = 2π rant - θ
θ in 1 st θ	in 4 th		
$ \begin{array}{c} \therefore \theta = x \\ \therefore \theta = 60^{\circ} \end{array} \qquad $	$(360^{\circ} - x)$ = 300°		
\therefore The values of θ are:60° & 300°			
31 FUTURES	www.Cryp	First Term Tri	igonometry

موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department

2021-2022

Example 6

Find the S.S. of the equation: $4\cos^2 x - 3 = 0$, where $x \in [0, 2\pi]$ Solution 2nd quadrant ^y 1st quadrant 180 - θ θ $\therefore \sin^2 x = \frac{3}{4}$ х $\therefore \sin x = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$ $180 + \theta$ 360 - θ 3rd quadrant 4th quadrant v\ $\therefore \sin x = -\frac{\sqrt{3}}{2}$ $\therefore x \text{ lies in } 3^{\text{rd}} \text{ or } 4^{\text{th}} \text{ quad.}$ $\therefore \sin x = \frac{\sqrt{3}}{2}$ $\therefore x$ lies in 1^{st} or 2^{nd} quad. Let $\sin \theta = \frac{\sqrt{3}}{2}$ $\therefore \theta = 60^{\circ}$ Let $\sin \theta = \frac{\sqrt{3}}{2}$ $\therefore \theta = 60^{\circ}$ $x \text{ in } 2^{\text{nd}}$

 x in 3^{3d} x in 4^{th}
 $x = 180 + \theta$ $x = 360 - \theta$
x in 3^{3d} x in 1^{st} $x = \theta$ $x = 180 - \theta$ $\therefore x = 60^{\circ}$ $\therefore x = 240^{\circ}$ $\therefore x = 120^{\circ}$ $\therefore x = 300^{\circ}$ \therefore S.S. = { °, 120°, 240°, 300° }

Example 🕏

Find the general solution of the equation: $\sin 2\theta = \cos 5\theta$, which satisfies the equation.

Solution		
$\therefore \sin 2\theta = \cos 5\theta$	$\therefore 50 \pm 20 = \mathbf{90^{\circ}} + \mathbf{360^{\circ}} \mathbf{n}$	
$\therefore 5\theta \pm 2\theta = \frac{\pi}{2} + 2\pi n$		
$\therefore 5\mathbf{\Theta} + 2\mathbf{\Theta} = \frac{\pi}{2} + 2\pi n$	$\therefore 50 - 20 = \frac{\pi}{2} + \mathbf{2\pi n}$	
$\therefore 7\mathbf{\Theta} = \frac{\pi}{2} + 2\pi n$	$\therefore 3\theta = \frac{\pi}{2} + 2\pi n$	
$\therefore \Theta = \frac{\pi}{14} + \frac{2\pi}{7} n$	$\therefore \Theta = \frac{\pi}{6} + \frac{2\pi}{3} \mathbf{n}$	

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

First Secondary	Futures Language Schools	2021-2022
PRACTICE (1)		
Q1: Simplify $\cos(360^\circ - \theta)$.		
$\left[A \right] - \cos \theta$		
$ B \cos \theta $		
\bigcirc sin θ		
$\boxed{\mathbf{D}} - \sin \theta$		
O2: Simplify $\tan(180^\circ - A)$		
$(22.5 \text{ mipmy tan}(160 \circ 0))$		
$\left[\begin{array}{c} \mathbf{A} \end{array} \right] = \tan \theta$		
$C \cot \theta$		
$D - \cot \theta$		
Q3: Using the fact that $\cos \theta = \sin (90^\circ - \theta)$, w	hich of the following is equivale	ent to cos 35°?
$\begin{bmatrix} A \end{bmatrix} \frac{1}{\sin 35^{\circ}}$		
$\boxed{B} - \sin 35^\circ$		
\boxed{C} sin 35°		
\boxed{D} sin 145°		
E sin 55°		
Q4: Simplify $\tan(360^\circ - \theta)$.		
\boxed{B} – tan θ		
c $\cot \theta$		
$\left[D \right] - \cot \theta$		
33 FUTURES EDUCATIONAL	First Term T	rigonometry

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department A
Q5: Which of the following is equivalent to $\sin 23^{\circ}$? A $-\cos 23^{\circ}$ B $\cos 157^{\circ}$ C $\cos 23^{\circ}$ D $\frac{1}{\cos 23^{\circ}}$ E $\cos 67^{\circ}$	
Q6: Which of the following is equivalent to $\cos 40^{\circ}$? A $\sin 140^{\circ}$ B $-\sin 40^{\circ}$ C $\sin 50^{\circ}$ D $\sin 40^{\circ}$ E $\frac{1}{\sin 40^{\circ}}$	
Q7: Which of the following is equal to $-\cos\theta$? A $\sin\left(\frac{3\pi}{2} + \theta\right)$ B $\sin\left(\frac{\pi}{2} + \theta\right)$ C $\cos\left(\frac{3\pi}{2} + \theta\right)$ D $\cos\left(\frac{\pi}{2} + \theta\right)$	
Q8: Which of the following is equal to $-\sin\theta$? A $\cos\left(\frac{\pi}{2} + \theta\right)$ B $\sin\left(\frac{3\pi}{2} + \theta\right)$ C $\sin\left(\frac{\pi}{2} + \theta\right)$ D $\cos\left(\frac{3\pi}{2} + \theta\right)$	
34 FUTURES	First Term Trigonometry

EDUCATIONAL SYSTEMS

First Secondary

2021-2022

First Term | Trigonometry

Q5: Find the value of $\sin(180^{\circ} - x) + \tan(360^{\circ} - x) + 7\sin(270^{\circ} - x)$ given $\sin x = \frac{1}{5}$ where $0^{\circ} < \theta < 90^{\circ}$. (A) $\frac{23}{4}$ (B) $\frac{139}{20}$ (C) $-\frac{139}{20}$ (D) $-\frac{23}{4}$
Q6: Find the value of $sin(-60^\circ) cos 30^\circ + \frac{tan 57^\circ}{cot 33^\circ}$ giving the answer in its simplest form. A $-\frac{1}{4}$ B $\frac{3}{4}$ C $\frac{1}{4}$ D $-\frac{3}{4}$
Q7: Find the value of $\frac{\sin(90 - x)\sin(x)}{\cos(90 - 2x)}$.
$ \begin{array}{c} B & \cos(90 - x) \\ \hline C & \frac{1}{2} \\ \hline D & 2 \\ \hline E & \sin(2x) \end{array} $

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

First Secondary	
-----------------	--

Futures Language Schools Mathematical Department

PRACTICE (3)

Q1: Find the value of $\cos 135^\circ + \tan 135^\circ + \csc 225^\circ + \cos 225^\circ$.

 $\begin{array}{c|c} A & 1+\sqrt{2} \\ \hline B & -\sqrt{2}-1 \end{array}$

 $c 1+2\sqrt{2}$

 $D - 2\sqrt{2} - 1$

Q2: Calculate $\sin 315^\circ \cos 45^\circ - \cos 120^\circ \sin 330^\circ$.

A	$\frac{3}{4}$
В	$\frac{1}{4}$
С	$-\frac{1}{4}$
D	$-\frac{3}{4}$

Q3: Calculate $4 \sin 330^{\circ} \sin^2 240^{\circ} - \cos 270^{\circ} \sec 240^{\circ} + \sin 270^{\circ} \cos^2 135^{\circ}$.

A	1
B	-1
С	-2

D 2

1

Q4: Evaluate $\sin 150^{\circ} \cos(-240)^{\circ} + \cos 2130^{\circ} \cot 240^{\circ}$.

$\begin{bmatrix} A \\ \hline 4 \end{bmatrix}$		
$\boxed{B} -\frac{1}{4}$		
\boxed{C} $-\frac{3}{4}$		
D $\frac{3}{4}$		

FUTURES EDUCATIONAL SYSTEMS

37

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department					
Related angles						
	4 - 4					
First: Complete each of the following:						
$1\cos(180^\circ + \theta) = \dots$	(2) $\tan(180^\circ - \theta) =$					
$(3) \csc (360^\circ - \theta) = \dots$	4 $\sin(360^\circ + \theta) =$					
$(5) \sin (90^\circ + \theta) = \dots$	6 cot ($90^{\circ} - \theta$) =					
7 sec ($270^{\circ} + \theta$) =	(8) $\cos(270^\circ - \theta) = \dots$					
Second: Complete each of the following v	vith a measure of an acute angle					
9 $\sin 25^\circ = \cos$ °	$10 \cos 67^\circ = \sin \dots^\circ$					
(11) $\tan 42^\circ = \cot$	(12) $\csc 13^\circ = \sec$					
13 If cotan $2\theta = \tan\theta$ where $0^{\circ} < \theta < 90^{\circ}$ then m ($\angle \theta$) =						
14 If $\sin 5\theta = \cos 4\theta$ where θ is a positive acute angle, then $\theta = $ °						
15 If sec $\theta = \sec (90^\circ - \theta)$, then $\cot \theta =$						
16 If $\tan 2\theta = \cot 3\theta$ where $\theta \in [0, \frac{\pi}{2}]$, then m ($\angle \theta$)= rad						
17 If $\cos \theta = \sin 2\theta$ where θ is a positive acute angle, then $\sin 3\theta =$						
38 FUTURES	First Term Trigonometry					

Futures Language Schools Mathematical Department 2021-2022

Futures Language Schools Mathematical Department

2021-2022

(25) If the terminal side of at the point B $(-\frac{3}{5}, \frac{4}{5})$ (A) $\sin(180^\circ + \theta)$	of the angle $ heta$ drawn in Θ , then find:	the standard position $\mathbf{B} \cos{(\frac{\pi}{2} - \theta)}$	intersects the unit circle
c $\tan(360^\circ - \theta)$		D $\csc(\frac{3\pi}{2}-\theta)$	
26 Discover the error:	All the following answ	wers are correct except	one wrong. What is it?:
A sin $(\theta - 270^\circ)$	B sin ($270^{\circ} - \theta$)	C cos (360° – θ)	D cos (360 °+ θ)
2. $\sin \theta$ equals A $\cos(\frac{\pi}{2} - \theta)$	B sin ($\pi - \theta$)	$c \cos(\frac{3\pi}{2}+\theta)$	D sin $(\frac{\pi}{2} + \theta)$
3- tan θ equals			

(A) $\cot(90^\circ - \theta)$ (B) $\cot(270^\circ - \theta)$ (C) $\tan(270^\circ - \theta)$ (D) $\tan(180^\circ + \theta)$

40

2021-2022

Example **1**

Graph the function $y = 5 \sin 3x$, where $0^{\circ} \le x \le 120^{\circ}$

Solution

 $\therefore 0^{\circ} \le x \le 120^{\circ} \qquad \qquad \therefore 0^{\circ} \le 3 x \le 360^{\circ}$

1 We start to fill second row with angles: 0° , 30° , 60° , 90° , 120° , ..., 360°

2 We fill first row with angles $: 0^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, \dots, 120^{\circ}$

③ We fill in the third row by the values of the sine of the angles in 2^{nd} row:

x	0	10	20	30	40	50	60	70	80	90	100	110	120
3x	0	30	60	90	120	150	180	210	240	270	300	330	360
sin 3 x	0	0.5	0.87	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0
$5\sin 3x$	0	2.5	4.35	5	4.35	2.5	0	-2.5	-4.35	-5	-4.35	-2.5	0

First Term | Trigonometry

FUTURES EDUCATIONAL

First Secondary	Futures Language Schools A 2021-2022 Mathematical Department A				
Remark In the form of:					
a sin b $x \&$ a cos b x , then the range is:	[-a, a] & Its periodic = $\frac{360^{\circ}}{b} = \frac{2 \pi}{b}$				
Example 2					
Complete each of the following:					
(1) If $f(x) = \cos 5 x$, then the range of the function of the second sec	he function is [-1, 1]				
(2) If $f(x) = 4 \sin x$, then the range of t	he function is [-4, 4]				
(3) The function $f: f(x) = \cos 2x$ is a	periodic function and its period is				
	$Periodic = \frac{360^{\circ}}{2} = 180^{\circ}$				
(4) The function $f: f(x) = 5 \cos 3x$ is a	periodic function and its period is				
	$\mathbf{Periodic} = \frac{360^{\circ}}{3} = 120^{\circ}$				
(5) If $x \in [0, \pi]$, then: $\ldots \leq \sin x \leq $	\leq $0 \leq \sin x \leq 1$				
(6) If $x \in [0, 2\pi]$, then: $d = \cos x \le d = -1 \le \cos x \le d \le -1 \le \cos x \le d \le$					
(7) If $\cos 2x \in [-1, 1]$, then $\cos 4x \in [\dots, \dots, \dots]$ [-1, 1]					
(8) If the function $y = a \sin b x$ where a and $b \in \mathbb{R}_+$ is periodic and its period					
is 720° and its range $[-3, 3]$, then a =, b =					
\therefore Its range = [-3, 3] \therefore a = 3					
$\therefore \text{ Its period} = 720^{\circ} \qquad \qquad \therefore \frac{360^{\circ}}{b} =$	720° $\therefore \mathbf{b} = \frac{360^\circ}{720^\circ} = \frac{1}{2}$				

44

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

46

موقع مذكرات جاهزة للطباعة

Futures Language Schools Mathematical Department 2021-2022

www.Cryp2Day.com موقع مذكرات ماهزة للطباعة

48

Futures Language Schools

2021-2022

10 cm

В

Mathematical Department Example **3** \triangle ABC is a triangle in which: AB = AC = 10 cm., AC = 12 cm. \overrightarrow{AD} is drawn $\perp \overrightarrow{BC}$ to cut it at D **1** Find the value of: sin B + cos C **2** Find the value of: $tan (\angle CAD)$ **8** Show that: $\sin C + \cos C > 1$, then find the value of: $\sin^2 C + \cos^2 C$ and deduce that: $\sin^2 C + \cos^2 < \sin C + \cos C$ Solution $\therefore \overrightarrow{AD} + \overrightarrow{BC}$ $\therefore AD = \sqrt{10^2 - 6^2} = 8 \text{ cm}$ 10 cm **1** :: $\sin B = \frac{8}{10} = \frac{4}{5}$ & $\cos C = \frac{6}{10} = \frac{3}{5}$ $\therefore \sin B + \cos C = \frac{4}{5} + \frac{3}{5} = \frac{7}{5}$ D 6 cm 6 cm **2** In \triangle ACD: \therefore tan (\angle CAD) = $\frac{6}{8} = \frac{3}{4}$ **3** :: $\sin C = \frac{8}{10} = \frac{4}{5}$ & $\cos C = \frac{6}{10} = \frac{3}{5}$ $\therefore \sin C + \cos C = \frac{4}{5} + \frac{3}{5} = \frac{7}{5} = 1.6$ $\therefore \sin C + \cos C > 1$ $\therefore \sin^2 C + \cos^2 C = \left(\frac{4}{5}\right)^2 + \left(\frac{3}{5}\right)^2 = 1$ $\therefore \sin^2 C + \cos^2 < \sin C + \cos C$

موقع مذكرات جاهزة للطباعة

49

Futures Language Schools Mathematical Department

2021-2022

Example **2**

51

موقع مذكرات واهزة للطباعة

Futures Language Schools

PRACTICE (1)

Q1: Find $\csc \theta$ given $\tan \theta = \frac{24}{7}$ and $\cos \theta < 0$.
$\boxed{A} -\frac{25}{24}$
$\boxed{B} -\frac{25}{7}$
$\boxed{C} \frac{25}{24}$
$D \frac{25}{7}$

Q2: Find the value of $\cos(180^\circ - \theta)$ given $\sin \theta = -\frac{3}{5}$ where $270^\circ < \theta < 360^\circ$.					
$A \frac{4}{5}$					
\mathbb{B} $-\frac{4}{5}$					
$C \frac{3}{4}$					
$D -\frac{3}{4}$					

Q3: Find all the trigonometric ratios of θ given $\cot \theta = -\frac{8}{15}$ where $\theta \in \left[\frac{3\pi}{2}, 2\pi\right]$.
A $\sin \theta = -\frac{15}{17}, \cos \theta = \frac{8}{17}, \tan \theta = \frac{15}{8}, \csc \theta = \frac{17}{15}, \sec \theta = \frac{17}{8}$
B $\sin \theta = \frac{15}{17}, \cos \theta = \frac{8}{17}, \tan \theta = -\frac{15}{8}, \csc \theta = -\frac{17}{15}, \sec \theta = -\frac{17}{8}$
C $\sin \theta = -\frac{15}{17}, \cos \theta = \frac{8}{17}, \tan \theta = -\frac{15}{8}, \csc \theta = -\frac{17}{15}, \sec \theta = \frac{17}{8}$
D $\sin \theta = -\frac{15}{17}, \cos \theta = -\frac{8}{17}, \tan \theta = \frac{15}{8}, \csc \theta = -\frac{17}{15}, \sec \theta = \frac{17}{8}$

Futures Language Schools Mathematical Department

2021-2022

Q4: Given that $\cot(\theta) = -\frac{3}{2}$, where $\frac{\pi}{2} < \theta < \pi$, evaluate $\sec^2(\theta)$ without using a calculator.
$\begin{bmatrix} A \end{bmatrix} \frac{13}{9}$
$\mathbb{B} \frac{9}{13}$
$\begin{bmatrix} C \end{bmatrix} -\frac{9}{13}$
$\boxed{\mathbf{D}} -\frac{13}{9}$
$\left[E \right] -\frac{5}{2}$
Q5: Given that $\csc \theta = -\frac{7}{6}$ and $\tan \theta > 0$, find $\cos \theta$.
U
$\begin{bmatrix} A \end{bmatrix} \frac{\sqrt{13}}{7}$
$\begin{bmatrix} A \\ \frac{\sqrt{13}}{7} \\ B \\ \frac{-6}{7} \end{bmatrix}$
$A \frac{\sqrt{13}}{7}$ $B -\frac{6}{7}$ $C -\frac{\sqrt{13}}{6}$
$A \frac{\sqrt{13}}{7}$ $B -\frac{6}{7}$ $C -\frac{\sqrt{13}}{6}$ $D \frac{6}{7}$
$A \frac{\sqrt{13}}{7}$ $B -\frac{6}{7}$ $C -\frac{\sqrt{13}}{6}$ $D \frac{6}{7}$ $E -\frac{\sqrt{13}}{7}$

Q1: Find the value of θ that satisfies $\csc \theta - \sqrt{2} = 0$ where $\theta \in \left[0, \frac{\pi}{2}\right]$.

www.Cryp2Day.com موقع مذكرات جاهزة للطباعة

Futures Language Schools A 2021-2022

i ii st secondal y	Mathematical Department
Q3: Find θ in degrees given sec $(180^\circ + \theta) = -$	$-\frac{2\sqrt{3}}{3}$ where θ is the smallest positive angle.
 Q4: Find the set of values satisfying sin θ cot θ A {30°, 330°} B Ø C {30°, 180°} D {180°, 135°} 	$\theta = -\frac{1}{2}$ where $0^{\circ} \le \theta \le 90^{\circ}$.
Q5: Find the value of θ that satisfies sec θ –	$2 = 0$ where $\theta \in \left]0, \frac{\pi}{2}\right[$.
Q6: Find the value of θ that satisfies $\sec \theta - \frac{2}{2}$	$\frac{\sqrt{3}}{3} = 0 \text{ where } \theta \in \left]0, \frac{\pi}{2}\right[.$
Q7: Find the value of θ that satisfies $\csc \theta - \frac{2}{2}$	$\frac{\sqrt{3}}{3} = 0$ where $\theta \in \left]0, \frac{\pi}{2}\right[$.
 Q8: Find the set of values satisfying cot θ = -1 A {135°, 225°} B {225°, 315°} C {45°, 225°} D {135°, 315°} 	1 given 0° < θ < 360°.
Q9: Find θ in degrees given sin (180° + θ) =	$-\frac{\sqrt{3}}{2}$ where θ is the smallest positive angle.
54 FUTURES EDUCATIONAL SV SV EMS	First Term Trigonometry موقع مذكرات جاهزة

Futures Language Schools **First Secondary** 2021-2022 Mathematical Department Finding the measure of an angle given the value of one of its trigonometric ratios First : Multiple choice: (1) If sin $\theta = 0.4325$ where θ is a positive acute angle, then m ($/\theta$) equals ______ **B** 64.347° **C** 32.388° **D** 46.316° (A) 25.626° (2) If $\tan \theta = 1.8$ and $90^\circ \le \theta \le 360^\circ$, then m ($\angle \theta$) equals ______ **C** 240.945° **D** 299.055° A) 60.945° **B** 119.055° Second : Answer the following questions: (1) If the terminal side of angle θ in the standard position intersects the unit circle at point B, then find each of $\sin \theta$ and $\cos \theta$ in the following cases: **A** B $(\frac{1}{2}, \frac{\sqrt{3}}{2})$ **C** B $\left(-\frac{6}{10}, \frac{8}{10}\right)$ **B** B $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ (2) If the terminal side of angle θ in the standard position intersects the unit circle at point B then find each of sec θ and csc θ in the following cases: **A** B $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2})$ **C** B $\left(-\frac{5}{13}, -\frac{12}{13}\right)$ **B** B $\left(-\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}}\right)$ (3) If the terminal side of angle θ in the standard position intersects the unit circle at point B, then find each of $\tan \theta$ and $\cot \theta$ in the following cases:: **C** B $\left(-\frac{4}{5}, -\frac{3}{5}\right)$ **A** B $(\frac{1}{\sqrt{10}}, -\frac{3}{\sqrt{10}})$ **B** B $(\frac{3}{\sqrt{34}}, -\frac{5}{\sqrt{34}})$

موقع مذكرات ماهزة للطباعة

Futures Language Schools **First Secondary** 2021-2022 Mathematical Department (4) If the terminal side of angle θ in the standard position intersects the unit circle at point B, then find m($\angle \theta$) where $0^{\circ} < \theta < 360^{\circ}$ when: **A** B $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ **B** B $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ **C** B $(\frac{6}{10}, \frac{-8}{10})$ (5) Use the degree measure to find the smallest positive angle which satisfies each of the following: (A) $\sin^{-1} 0.6$ **B** $\cos^{-1} 0.436$ (c) $\tan^{-1} 1.4552$ **F** csc⁻¹ (-1.6004) (E) cot⁻¹ 3.6218 **D** sec⁻¹ (-2.2364) (6) If $0^{\circ} \leq \theta \leq 360^{\circ}$, then find the measure of angle θ in each of the following: **A** $\sin^{-1}(0.2356)$ **B** $\cos^{-1}(-0.642)$ C tan⁻¹ (- 2.1456) **7** If $\sin \theta = \frac{1}{3}$ and $90^\circ \le \theta \le 180^\circ$. A Calculate the measure of angle θ to the nearest second **B** Find the value of $\cos \theta$, $\tan \theta$ and $\sec \theta$. 8 Ladder: A ladder of length 5 metres rests on a wall, if the 5m 3 m height of the ladder from the ground is 3 metres. Find in radian the measure of the angle of inclination of the ladder to the horizontal.

موقع مذكرات جاهزة للطباعة

56

First Seconda	ary
---------------	-----

Futures Language Schools Mathematical Department

موقع مذكرات جاهزة للطباعة

First Secondary		Futures Language Mathematical De	partment A 2021-2022			
7 Find the degree measure in the interval $0^{\circ} \le \theta \le 360^{\circ}$ for each of the following:						
(\mathbf{A}) tan ⁻¹ 1	B $\sin^{-1}(-\frac{1}{2})$	C $\cos^{-1}(\frac{\sqrt{3}}{2})$	D $\tan^{-1}(-\sqrt{3})$			
8 A ramp length is 24 metres and its height from the ground is 9 metres. Write a trigonometric function you can use to find the measure of the angle of inclinati ramp on the horizontal ground, then find its measure.						
	ة للطباعة تنزيل من App Store بالأ يؤمن	تطبیق مذکرات جاهز احصل علیه من Google Play فرای الأن				
	www.cryp2day.con	كرات باهزة للطباعة - ١	موقع مذر			
58		Fi	rst Term Trigonometry			